首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
After 70 years, modern pressure‐driven polymer membrane processes with liquids are mature and accepted in many industries due to their good performance, ease of scale‐up, low energy consumption, modular compact construction, and low operating costs compared with thermal systems. Successful isothermal operation of synthetic membranes with liquids requires consideration of three critical aspects or “legs” in order of relevance: selectivity, capacity (i.e. permeation flow rate per unit area) and transport of mass and momentum comprising concentration polarization (CP) and fouling (F). Major challenges remain with respect to increasing selectivity and controlling mass transport in, to and away from membranes. Thus, prediction and control of membrane morphology and a deep understanding of the mechanism of dissolved and suspended solute transport near and in the membrane (i.e. diffusional and convective mass transport) is essential. Here, we focus on materials development to address the relatively poor selectivity of liquid membrane filtration with polymers and discuss the critical aspects of transport limitations. Machine learning could help optimize membrane structure design and transport conditions for improved membrane filtration performance.  相似文献   

2.
A BN membrane with a distinct nanoconfinement effect toward efficient ethylene/ethane separation is presented. The horizontal and inclined self‐assembly of 2D BN nanosheets endow the BN membrane with abundant percolating nanochannels, and these nanochannels are further decorated by reactive ionic liquids (RILs) to tailor their sizes as well as to achieve nanoconfinement effect. The noncovalent interactions between RIL and BN nanosheets favor the ordered alignment of the cations and anions of RIL within BN nanochannels, which contributes to a fast and selective ethylene transport. The resultant membranes exhibit an unprecedented separation performance with superhigh C2H4 permeance of 138 GPU and C2H4/C2H6 selectivity of 128 as well as remarkably improved long‐term stability for 180 h, outperforming reported state‐of‐the‐art membranes.  相似文献   

3.
Polymer membranes used in separation applications exhibit a tradeoff between permeability and selectivity. That is, membranes that are highly permeable tend to have low selectivity and vice versa. For ion-exchange membranes used in applications such as electrodialysis and reverse electrodialysis, this tradeoff is expressed in terms of membrane permselectivity (i.e., ability to selectively permeate counter-ions over co-ions) and ionic conductivity (i.e., ability to transport ions in the presence of an electric field). The use of membrane permselectivity and ionic conductivity to illustrate a tradeoff between counter-ion throughput and counter-ion/co-ion selectivity in ion-exchange membranes complicates the analysis since permselectivity depends on the properties of the external solution and ionic conductivity depends on the transport of all mobile ions within a membrane. Furthermore, the use of these parameters restricts the analysis to ion-exchange membranes used in applications in which counter-ion/co-ion selectivity is required. In this study, the permselectivity-conductivity tradeoff relation for ion-exchange membranes is reformulated in terms of ion concentrations and diffusion coefficients in the membrane. The reformulated framework enables a direct comparison between counter-ion throughput and counter-ion/co-ion selectivity and is general. The generalizability of the reformulated tradeoff relation is demonstrated for cation-exchange membranes used in vanadium redox flow batteries.  相似文献   

4.
Karatay E  Lammertink RG 《Lab on a chip》2012,12(16):2922-2929
The compelling need for an efficient supply of gases into liquids or degassing of fluids within confined microchannels triggered our study on membrane assisted microchemical systems. Porous hydrophobic flat/micro-structured polyvinylidene fluoride (PVDF) membranes were fabricated and integrated in a glass G/L contacting microfluidic device with the aid of optical adhesives. The oxygen transport in microchannels, driven by convection and diffusion, was investigated both experimentally and numerically. The effects of intrinsic membrane morphology on the G/L contacting performance of the resultant membranes were studied. The experimental performance of the flat membranes are shown to obey the simulation results with the assumptions of negligible gas phase and membrane mass transfer limitations. Micro-structured membranes revealed apparent slippage and enhanced mass transport rates, and exceeded the experimental performance of the flat membranes.  相似文献   

5.
Polyetherimide (PEI) is an extraordinary type of polyimide with excellent thermal and mechanical properties. The polymer is also gas permeable and is considered one of the best membranes for gas separation. Despite the high selectivity, PEI suffers from low permeability due to the trade‐off between phenomena in polymers. To overcome this limitation, fillers are added during the membrane preparation to create voids for better gas transport. In this paper, permeability and selectivity data of PEI membranes for the separation of oxygen, carbon dioxide, and helium are discussed. The paper also summarizes the reported studies for adding fillers to improve the membrane performance.  相似文献   

6.
High-flux ceramic membranes with a nanomesh of metal oxide nanofibers   总被引:2,自引:0,他引:2  
Traditional ceramic separation membranes, which are fabricated by applying colloidal suspensions of metal hydroxides to porous supports, tend to suffer from pinholes and cracks that seriously affect their quality. Other intrinsic problems for these membranes include dramatic losses of flux when the pore sizes are reduced to enhance selectivity and dead-end pores that make no contribution to filtration. In this work, we propose a new strategy for addressing these problems by constructing a hierarchically structured separation layer on a porous substrate using large titanate nanofibers and smaller boehmite nanofibers. The nanofibers are able to divide large voids into smaller ones without forming dead-end pores and with the minimum reduction of the total void volume. The separation layer of nanofibers has a porosity of over 70% of its volume, whereas the separation layer in conventional ceramic membranes has a porosity below 36% and inevitably includes dead-end pores that make no contribution to the flux. This radical change in membrane texture greatly enhances membrane performance. The resulting membranes were able to filter out 95.3% of 60-nm particles from a 0.01 wt % latex while maintaining a relatively high flux of between 800 and 1000 L/m2.h, under a low driving pressure (20 kPa). Such flow rates are orders of magnitude greater than those of conventional membranes with equal selectivity. Moreover, the flux was stable at approximately 800 L/m2.h with a selectivity of more than 95%, even after six repeated runs of filtration and calcination. Use of different supports, either porous glass or porous alumina, had no substantial effect on the performance of the membranes; thus, it is possible to construct the membranes from a variety of supports without compromising functionality. The Darcy equation satisfactorily describes the correlation between the filtration flux and the structural parameters of the new membranes. The assembly of nanofiber meshes to combine high flux with excellent selectivity is an exciting new direction in membrane fabrication.  相似文献   

7.
A review on developments of liquid membranes (LMs) in the field of gas and vapor separation of the last 16 years is presented. Liquid membrane configurations employing supports, i.e. immobilized, supported and contained liquid membranes are focussed and detailed information on the respective materials, i.e. supports (supplier, type, thickness, pore width, porosity, tortuosity), liquids and carriers, are presented together with their specific separation tasks. Performance of different LMs in terms of permeability and selectivity as well as stability (duration of testing, applied differential pressures) are compared and discussed. Finally, different preparation methods of LMs are illustrated.  相似文献   

8.
Two‐dimensional (2D) materials with atomic thicknesses have aroused great interest as promising building blocks for the preparation of ultrathin 2D membranes. These 2D membranes can exhibit unprecedentedly high separation permeance owing to their ultrasmall membrane thicknesses and superior selectivity because of their size‐selective nanopores and/or nanochannels. Until now, a large number of 2D membranes with good performance have been reported, highlighting the potential of these novel membranes for efficient liquid and gas separations. Summarized in this review are the latest advances in 2D membranes, with a special focus on industrially attractive separation processes, fabrication methods of laminar membranes, choices of membrane materials, designs of membrane structures, and unique membrane transport properties. Opportunities and challenges of 2D membranes for commercial applications are also briefly discussed.  相似文献   

9.
《先进技术聚合物》2017,28(11):1357-1365
Hairy nanocellulose (NC) was prepared by in‐situ admicellar polymerization of styrene on NC surface in the presence of cetyltrimethylammonium bromide through a stepwise fashion. It was also tried to achieve three hairy NCs with different polystyrene (PS) brush contents (i.e. 40, 50, and 80%) through altering monomer initial concentration. Then, NC and three hairy NCs were separately added into cellulose acetate (CA) solutions to fabricate membranes via the phase inversion technique. Transmission electron microscope images show that NC and three hairy NCs are spherical‐shaped nanoparticles. Results of Fourier transform infrared spectra provide clear evidence of PS brush being attached to the NC surfaces. Thermal gravimetric analysis confirms that increasing styrene initial concentration leads to enhanced PS content of hairy NCs. Results also elucidate that dispersions of prepared hairy NCs are highly stable even at high loading levels. It was found that incorporation of 1 wt% hairy NC with optimum brush content of 50% within CA membranes results in the increasing membrane water permeability from 7 to 40 l/m2 hr with no change in its selectivity. Indeed, new interactions induced by PS brushes at hairy NC/CA interfaces result in the creation of connected channels at the interfaces which facilitate water transport through the membrane. This study provides insights into the key role that PS brushes play in overcoming the dispersion problems of NC in nonpolar media and offers guidelines to tailor channels within hairy NC/CA membrane for enhanced filtration performance. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
Graphene oxide (GO) has triggered significant attention as a new type of self‐assembly membrane material. However, the low filtration flux and unstable performance of GO membrane limit its practical application. Hence, in this work, layered double hydroxides (LDHs), as a 2D material with double‐layer channel structure and positive electricity, were self‐assembled with GO at weight ratio of 7:3 by electrostatic interaction. Then, the GO/LDH hybrids combined with polydopamine (PDA) to obtain stable and high‐flux GO‐based membranes through vacuum filtration and the structure and morphology of as‐prepared samples were characterized by FT‐IR, XRD, XPS, and SEM. Furthermore, the separation performance and surface electronegativity of membranes were tested via pure water flux, rejection efficiency, recycle experiments, and zeta potential. Results revealed that the stability and flux of composite membrane were enhanced significantly compared with neat GO‐based membrane. Further, the dye rejection rate of methylene blue (MB) is higher than Congo red (CR) and rhodamine B (Rh B) and reached to 99.8%.  相似文献   

11.
In this study, liquid membranes denoted as polymer inclusion membranes (PIMs) consisting of cellulose triacetate (CTA) as a polymer matrix, o-nitrophenyl octyl ether (NPOE) as a plasticiser and phosphonium ionic liquids, trihexyltetradecylphosphonium chloride (Cyphos® IL 101) and trihexyltetradecylphosphonium bis(2,4,4-trimethylpentyl)phosphinate (Cyphos® IL 104), as carriers of metal ions were developed. The transport of Fe(II) and Fe(III) from chloride aqueous solutions across PIMs was investigated. It is shown that these phosphonium ionic liquids are effective carriers of Fe(III) ions through PIMs. While, for Fe(II), the highest value of extraction efficiency and recovery factor after 72 h does not exceed 40%, by contrast, the values of these parameters for Fe(III) transport ranged from 60% to almost 100%. Additionally, the results indicate the transport rate to be strongly influenced by the amount of carrier in the membrane. The highest initial flux of Fe(III) and permeability coefficient are noted for the membrane containing 40 mass % Cyphos® IL 101. However, it is shown that the transport of Fe(III) increases as the carrier content is increased then decreases at a content of the carrier equal to 40 mass %. It appears that the Fe(III)-carrier complex decomposes with difficulty at the interface of the membrane-receiving phase, hence leading to low values of recovery factor Fe(III).  相似文献   

12.
Porous organic cages (POCs) are individual soluble, porous molecules. When fabricated into mixed‐matrix membranes (MMMs), the soluble POC molecules have the potential to exhibit intimate molecular‐level mixing with the polymer matrix. POCs have only recently been incorporated into mixed matrix membrane materials, but this process has not yet resulted in significant improvements of membrane performance. Now, vertex‐functionalized amorphous scrambled porous organic cages (ASPOCs) have been utilized as membrane performance enhancers and the amorphous ASPOC mixtures are observed to distribute throughout the matrix without any indication of particle formation or agglomeration, creating unique, molecularly mixed composite membranes. Overall, the molecularly mixed composite membrane provide significant increases in both membrane permeability and selectivity, offering new avenues for creation of membranes with unique properties in industrially relevant separations.  相似文献   

13.
Conventional polymer membranes suffer from low flux and serious fouling when used for treating emulsified oil/water mixtures. Reported herein is the fabrication of a novel superhydrophilic and underwater superoleophobic poly(acrylic acid)‐grafted PVDF filtration membrane using a salt‐induced phase‐inversion approach. A hierarchical micro/nanoscale structure is constructed on the membrane surface and endows it with a superhydrophilic/underwater superoleophobic property. The membrane separates both surfactant‐free and surfactant‐stabilized oil‐in‐water emulsions under either a small applied pressure (<0.3 bar) or gravity, with high separation efficiency and high flux, which is one to two orders of magnitude higher than those of commercial filtration membranes having a similar permeation property. The membrane exhibits an excellent antifouling property and is easily recycled for long‐term use. The outstanding performance of the membrane and the efficient, energy and cost‐effective preparation process highlight its potential for practical applications.  相似文献   

14.
Achieving high membrane performance in terms of gas permeance and carbon dioxide selectivity is an important target in carbon capture. Aiming to manipulate the channel affinity towards CO2 to implement efficient separations, gas separation membranes containing CO2‐philic and non‐CO2‐philic nanodomains in the interlayer channels of graphene oxide (GO) were formed by intercalating poly(ethylene glycol) diamines (PEGDA). PEGDA reacts with epoxy groups on the GO surface, constructing CO2‐philic nanodomains and rendering a high sorption capacity, whereas unreacted GO surfaces give non‐CO2‐philic nanodomains, rendering low‐friction diffusion. Owing to the orderly stacking of nanochannels through cross‐linking and the heterogeneous nanodomains with moderate CO2 affinity, a GO‐PEGDA500 membrane exhibits a high CO2 permeance of 175.5 GPU and a CO2/CH4 selectivity of 69.5, which is the highest performance reported for dry‐state GO‐stacking membranes.  相似文献   

15.
Osmotic energy, obtained through different concentrations of salt solutions, is recognized as a form of a sustainable energy source. In the past years, membranes derived from asymmetric aromatic compounds have attracted attention because of their low cost and high performance in osmotic energy conversion. The membrane formation process, charging state, functional groups, membrane thickness, and the ion‐exchange capacity of the membrane could affect the power generation performance. Among asymmetric membranes, a bipolar membrane could largely promote the ion transport. Here, two polymers with the same poly(ether sulfone) main chain but opposite charges were synthesized to prepare bipolar membranes by a nonsolvent‐induced phase separation (NIPS) and spin‐coating (SC) method. The maximum power density of the bipolar membrane reaches about 6.2 W m?2 under a 50‐fold salinity gradient, and this result can serve as a reference for the design of bipolar membranes for osmotic energy conversion systems.  相似文献   

16.
Membranes which allow fast and selective transport of protons and cations are required for a wide range of electrochemical energy conversion and storage devices, such as proton‐exchange membrane (PEM) fuel cells (PEMFCs) and redox flow batteries (RFBs). Herein we report a new approach to designing solution‐processable ion‐selective polymer membranes with both intrinsic microporosity and ion‐conductive functionality. Polymers are synthesized with rigid and contorted backbones, which incorporate hydrophobic fluorinated and hydrophilic sulfonic acid functional groups, to produce membranes with negatively charged subnanometer‐sized confined ionic channels. The ready transport of protons and cations through these membranes, and the high selectivity towards nanometer‐sized redox‐active molecules, enable efficient and stable operation of an aqueous alkaline quinone redox flow battery and a hydrogen PEM fuel cell.  相似文献   

17.
A radiation grafted poly(vinylidene fluoride) anion-exchange membrane has been formulated and its behaviour is analysed through the splitting of sodium sulphate by electrohydrolysis. Experiments carried out in a two-compartment membrane electrolysis cell, investigated the influence of flow rate, current density and salt concentration on the performance of the membrane. The different flow conditions had a small influence on current efficiencies, while productivity was significantly greater at higher current densities.The new PVDF material gave acceptable selectivity, low electrical resistance and good chemical, thermal and mechanical stability. A comparison with experiments using cation-exchange membranes demonstrated an inferior performance of the anion-exchange PVDF membrane, in terms of current efficiency and transport properties, despite the lower energy requirements.  相似文献   

18.
High molar mass polysaccharides (locust bean gum and karaya gum) and effluents from a mechanical pulp mill and a paper mill were nanofiltered with commercially available nanofiltration (NF) membranes. The effect of the filtration conditions on the flux (critical flux), retention, and the fouling of the membranes was studied. The experiments were conducted by increasing and decreasing the pressure and measuring the flux thus obtained.

The critical flux was observed to increase with increasing flow velocity and decreasing concentration. An increase in pH increased the electrostatic repulsion between the membrane and the dissociated (charged) components in the paper mill effluents. As a result, a higher critical flux was obtained and also the retentions of the charged substances improved. Only a weak form of the critical flux was observed with the mill effluents. The permeate flux deviated from the pure water flux even at the lowest pressure, but increased linearly with pressure until the weak form of the critical flux was exceeded. The small decrease in flux immediately after filtration was started was probably caused by the plugging of the free spaces in the membranes or by the adsorption of foulants onto the membrane surface.

In the filtrations with the high molar mass polysaccharides, a strong form of the critical flux as well as a weak form were observed. The significant irreversible fouling of the most hydrophobic membrane was due to adsorption of the model substances by hydrophobic interaction. A precleaning of the membranes with an alkaline cleaning agent improved the pure water fluxes by up to 30%, but it had only a small effect on the critical or the limiting flux. The pure water fluxes of precleaned membranes after filtration were still higher than the pure water fluxes of the untreated membranes before filtration.  相似文献   


19.
Pervaporation experiments were performed on microporous titania membranes using several binary liquids containing 2-20 wt % water. The membrane was nonselective in the separation of water from alcohols and p-dioxane but showed a remarkably high selectivity in the separation of water from ethylene glycol/water mixtures with < or =15 mol % water. The absence of selectivity under most conditions is explained by the large pore size (0.9 nm) of microporous titania. The high selectivity for water in the separation from ethylene glycol can be explained by the formation of a hydrogen-bonded network of ethylene glycol in the micropores, which blocks transport of ethylene glycol, while water can still permeate through. These networks are disrupted by water at higher concentrations, leading to full loss of membrane selectivity.  相似文献   

20.
《Electrophoresis》2018,39(17):2181-2187
A nanoporous poly‐(styrene sulfonate) (poly‐SS) membrane was developed for fast and selective ion transport in a microfluidic chip. The poly‐SS membrane can be photopolymerized in‐situ at arbitrary location of a microchannel, enabling integrated fluidics design in the microfluidic chip. The membrane is characterized by a low hydraulic resistance and a high surface charge to maximize the electroosmotic flow and charge selectivity. The membrane characteristics were investigated by charge‐selective electropreconcentration method. Experimental results show membranes with various percentages of poly‐SS are able to concentrate anions (fluorescein and TRITC‐labeled BSA). The anion‐selective electropreconcentration process is stable and 26‐times faster than previously reported poly‐AMPS (2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid) based system. The electropreconcentration was also demonstrated to depend on the sample valency and buffer concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号