首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Hybrid materials, integrating the merits of individual components, are ideal structures for efficient sodium storage. However, the construction of hybrid structures with decent physical/electrochemical properties is still challenging. Now, the elaborate design and synthesis of hierarchical nanoboxes composed of three‐layered Cu2S@carbon@MoS2 as anode materials for sodium‐ion batteries is reported. Through a facile multistep template‐engaged strategy, ultrathin MoS2 nanosheets are grown on nitrogen‐doped carbon‐coated Cu2S nanoboxes to realize the Cu2S@carbon@MoS2 configuration. The design shortens the diffusion path of electrons/Na+ ions, accommodates the volume change of electrodes during cycling, enhances the electric conductivity of the hybrids, and offers abundant active sites for sodium uptake. By virtue of these advantages, these three‐layered Cu2S@carbon@MoS2 hierarchical nanoboxes show excellent electrochemical properties in terms of decent rate capability and stable cycle life.  相似文献   

2.
Hybrid materials, integrating the merits of individual components, are ideal structures for efficient sodium storage. However, the construction of hybrid structures with decent physical/electrochemical properties is still challenging. Now, the elaborate design and synthesis of hierarchical nanoboxes composed of three-layered Cu2S@carbon@MoS2 as anode materials for sodium-ion batteries is reported. Through a facile multistep template-engaged strategy, ultrathin MoS2 nanosheets are grown on nitrogen-doped carbon-coated Cu2S nanoboxes to realize the Cu2S@carbon@MoS2 configuration. The design shortens the diffusion path of electrons/Na+ ions, accommodates the volume change of electrodes during cycling, enhances the electric conductivity of the hybrids, and offers abundant active sites for sodium uptake. By virtue of these advantages, these three-layered Cu2S@carbon@MoS2 hierarchical nanoboxes show excellent electrochemical properties in terms of decent rate capability and stable cycle life.  相似文献   

3.
The construction of hybrid architectures for electrode materials has been demonstrated as an efficient strategy to boost sodium‐storage properties because of the synergetic effect of each component. However, the fabrication of hybrid nanostructures with a rational structure and desired composition for effective sodium storage is still challenging. In this study, an integrated nanostructure composed of copper‐substituted CoS2@CuxS double‐shelled nanoboxes (denoted as Cu‐CoS2@CuxS DSNBs) was synthesized through a rational metal–organic framework (MOF)‐based templating strategy. The unique shell configuration and complex composition endow the Cu‐CoS2@CuxS DSNBs with enhanced electrochemical performance in terms of superior rate capability and stable cyclability.  相似文献   

4.
Hybrid hollow nanostructures with tailored shell architectures are attractive for electrochemical energy storage applications. Starting with metal–organic frameworks (MOFs), we demonstrate a facile formation of hybrid nanoboxes with complex shell architecture where a CoSe‐enriched inner shell is intimately confined within a carbon‐enriched outer shell (denoted as CoSe@carbon nanoboxes). The synthesis is realized through manipulation of the template‐engaged reaction between Co‐based zeolitic imidazolate framework (ZIF‐67) nanocubes and Se powder at elevated temperatures. By virtue of the structural and compositional features, these unique CoSe@carbon nanoboxes manifest excellent lithium‐storage performance in terms of high specific capacity, exceptional rate capability, excellent cycling stability, and high initial Coulombic efficiency.  相似文献   

5.
Hybrid hollow nanostructures with tailored shell architectures are attractive for electrochemical energy storage applications. Starting with metal–organic frameworks (MOFs), we demonstrate a facile formation of hybrid nanoboxes with complex shell architecture where a CoSe‐enriched inner shell is intimately confined within a carbon‐enriched outer shell (denoted as CoSe@carbon nanoboxes). The synthesis is realized through manipulation of the template‐engaged reaction between Co‐based zeolitic imidazolate framework (ZIF‐67) nanocubes and Se powder at elevated temperatures. By virtue of the structural and compositional features, these unique CoSe@carbon nanoboxes manifest excellent lithium‐storage performance in terms of high specific capacity, exceptional rate capability, excellent cycling stability, and high initial Coulombic efficiency.  相似文献   

6.
We report the synthesis of cobalt sulfide multi‐shelled nanoboxes through metal–organic framework (MOF)‐based complex anion conversion and exchange processes. The polyvanadate ions react with cobalt‐based zeolitic imidazolate framework‐67 (ZIF‐67) nanocubes to form ZIF‐67/cobalt polyvanadate yolk‐shelled particles. The as‐formed yolk‐shelled particles are gradually converted into cobalt divanadate multi‐shelled nanoboxes by solvothermal treatment. The number of shells can be easily controlled from 2 to 5 by varying the temperature. Finally, cobalt sulfide multi‐shelled nanoboxes are produced through ion‐exchange with S2? ions and subsequent annealing. The as‐obtained cobalt sulfide multi‐shelled nanoboxes exhibit enhanced sodium‐storage properties when evaluated as anodes for sodium‐ion batteries. For example, a high specific capacity of 438 mAh g?1 can be retained after 100 cycles at the current density of 500 mA g?1.  相似文献   

7.
The practical implementation of lithium–sulfur batteries is obstructed by poor conductivity, sluggish redox kinetics, the shuttle effect, large volume variation, and low areal loading of sulfur electrodes. Now, amorphous N‐doped carbon/MoS3 (NC/MoS3) nanoboxes with hollow porous architectures have been meticulously designed as an advanced sulfur host. Benefiting from the enhanced conductivity by the N‐doped carbon, reduced shuttle effect by the strong chemical interaction between unsaturated Mo and lithium polysulfides, improved redox reaction kinetics by the catalytic effect of MoS3, great tolerance of volume variation and high sulfur loading arising from flexible amorphous materials with hollow‐porous structures, the amorphous NC/MoS3 nanoboxes enabled sulfur electrodes to deliver a high areal capacity with superior rate capacity and decent cycling stability. The synthetic strategy can be generalized to fabricate other amorphous metal sulfide nanoboxes.  相似文献   

8.
Molybdenum disulfide (MoS2) has received considerable interest for electrochemical energy storage and conversion. In this work, we have designed and synthesized a unique hybrid hollow structure by growing ultrathin MoS2 nanosheets on N‐doped carbon shells (denoted as C@MoS2 nanoboxes). The N‐doped carbon shells can greatly improve the conductivity of the hybrid structure and effectively prevent the aggregation of MoS2 nanosheets. The ultrathin MoS2 nanosheets could provide more active sites for electrochemical reactions. When evaluated as an anode material for lithium‐ion batteries, these C@MoS2 nanoboxes show high specific capacity of around 1000 mAh g?1, excellent cycling stability up to 200 cycles, and superior rate performance. Moreover, they also show enhanced electrocatalytic activity for the electrochemical hydrogen evolution.  相似文献   

9.
The construction of hybrid architectures for electrode materials has been demonstrated as an efficient strategy to boost sodium-storage properties because of the synergetic effect of each component. However, the fabrication of hybrid nanostructures with a rational structure and desired composition for effective sodium storage is still challenging. In this study, an integrated nanostructure composed of copper-substituted CoS2@CuxS double-shelled nanoboxes (denoted as Cu-CoS2@CuxS DSNBs) was synthesized through a rational metal–organic framework (MOF)-based templating strategy. The unique shell configuration and complex composition endow the Cu-CoS2@CuxS DSNBs with enhanced electrochemical performance in terms of superior rate capability and stable cyclability.  相似文献   

10.
The design and synthesis of hierarchical microboxes, assembled from SnS nanoplates coated with nitrogen‐doped carbon (NC) as an anode material for sodium‐ion batteries, is demonstrated. The template‐engaged multistep synthesis of the SnS@NC microboxes involves sequential phase transformation, polydopamine coating, and thermal annealing in N2. The SnS@NC composite with two‐dimensional nano‐sized subunits rationally integrates several advantages including shortening the diffusion path of electrons/Na+ ions, improving electric conductivity, and alleviating volume variation of the electrode material. As a result, the SnS@NC microboxes show efficient sodium storage performance with high capacity, good cycling stability, and excellent rate capability.  相似文献   

11.
Hierarchical tubular structures composed of Co3O4 hollow nanoparticles and carbon nanotubes (CNTs) have been synthesized by an efficient multi‐step route. Starting from polymer‐cobalt acetate (Co(Ac)2) composite nanofibers, uniform polymer‐Co(Ac)2@zeolitic imidazolate framework‐67 (ZIF‐67) core–shell nanofibers are first synthesized via partial phase transformation with 2‐methylimidazole in ethanol. After the selective dissolution of polymer‐Co(Ac)2 cores, the resulting ZIF‐67 tubular structures can be converted into hierarchical CNTs/Co‐carbon hybrids by annealing in Ar/H2 atmosphere. Finally, the hierarchical CNT/Co3O4 microtubes are obtained by a subsequent thermal treatment in air. Impressively, the as‐prepared nanocomposite delivers a high reversible capacity of 1281 mAh g?1 at 0.1 A g?1 with exceptional rate capability and long cycle life over 200 cycles as an anode material for lithium‐ion batteries.  相似文献   

12.
Metal sulfides with excellent redox reversibility and high capacity are very promising electrode materials for sodium‐ion batteries. However, their practical application is still hindered by the poor rate capability and limited cycle life. Herein, a template‐based strategy is developed to synthesize nitrogen‐doped carbon‐coated Cu9S5 bullet‐like hollow particles starting from bullet‐like ZnO particles. With the structural and compositional advantages, these unique nitrogen‐doped carbon‐coated Cu9S5 bullet‐like hollow particles manifest excellent sodium storage properties with superior rate capability and ultra‐stable cycling performance.  相似文献   

13.
Hierarchical MoS2 shells supported on carbon spheres (denoted as C@MoS2) have been synthesized through a one‐step hydrothermal method. The obtained hierarchical C@MoS2 microspheres simultaneously integrate the structural and compositional design rationales for high‐energy electrode materials based on two‐dimensional (2D) nanosheets. When evaluated as an anode material for lithium‐ion batteries (LIBs), the hierarchical C@MoS2 microspheres manifest high specific capacity, enhanced cycling stability and good rate capability.  相似文献   

14.
Hierarchical CaCo2O4 nanofibers (denoted as CCO‐NFs) with a unique hierarchical structure have been prepared by a facile electrospinning method and subsequent calcination in air. The as‐prepared CCO‐NFs are composed of well‐defined ultrathin nanoplates that arrange themselves in an oriented manner to form one‐dimensional (1D) hierarchical structures. The controllable formation process and possible formation mechanism are also discussed. Moreover, as a demonstration of the functional properties of such hierarchical architecture, the 1D hierarchical CCO‐NFs were investigated as materials for lithium‐ion batteries (LIBs) anode; they not only delivers a high reversible capacity of 650 mAh g?1 at a current of 100 mA g?1 and with 99.6 % capacity retention over 60 cycles, but they also show excellent rate capability with respect to counterpart nanoplates‐in‐nanofibers and nanoplates. The high specific surface areas as well as the unique feature of hierarchical structures are probably responsible for the enhanced electrochemical performance. Considering their facile preparation and good lithium storage properties, 1D hierarchical CCO‐NFs will hold promise in practical LIBs.  相似文献   

15.
Antimony‐based electrode materials with high specific capacity have aroused considerable interest as anode materials for sodium‐ion batteries (SIBs). Herein, we develop a template‐engaged ion‐exchange method to synthesize Sb2Se3 microclips, and the as‐obtained Sb2Se3 microclips are further in situ coated with polypyrrole (PPy). Benefiting from the structural and compositional merits, these PPy‐coated Sb2Se3 microclips exhibit enhanced sodium‐storage properties in terms of high reversible capacity, superior rate capability, and stable cycling performance.  相似文献   

16.
P2‐type layered oxides suffer from an ordered Na+/vacancy arrangement and P2→O2/OP4 phase transitions, leading them to exhibit multiple voltage plateaus upon Na+ extraction/insertion. The deficient sodium in the P2‐type cathode easily induces the bad structural stability at deep desodiation states and limited reversible capacity during Na+ de/insertion. These drawbacks cause poor rate capability and fast capacity decay in most P2‐type layered oxides. To address these challenges, a novel high sodium content (0.85) and plateau‐free P2‐type cathode‐Na0.85Li0.12Ni0.22Mn0.66O2 (P2‐NLNMO) was developed. The complete solid‐solution reaction over a wide voltage range ensures both fast Na+ mobility (10?11 to 10?10 cm2 s?1) and small volume variation (1.7 %). The high sodium content P2‐NLNMO exhibits a higher reversible capacity of 123.4 mA h g?1, superior rate capability of 79.3 mA h g?1 at 20 C, and 85.4 % capacity retention after 500 cycles at 5 C. The sufficient Na and complete solid‐solution reaction are critical to realizing high‐performance P2‐type cathodes for sodium‐ion batteries.  相似文献   

17.
Amorphous iron phosphate (FePO4) has attracted enormous attention as a promising cathode material for sodium‐ion batteries (SIBs) because of its high theoretical specific capacity and superior electrochemical reversibility. Nevertheless, the low rate performance and rapid capacity decline seriously hamper its implementation in SIBs. Herein, we demonstrate a sagacious multi‐step templating approach to skillfully craft amorphous FePO4 yolk–shell nanospheres with mesoporous nanoyolks supported inside the robust porous outer nanoshells. Their unique architecture and large surface area enable these amorphous FePO4 yolk–shell nanospheres to manifest remarkable sodium storage properties with high reversible capacity, outstanding rate performance, and ultralong cycle life.  相似文献   

18.
The increasing use of lithium‐ion batteries (LIBs) in high‐power applications requires improvement of their high‐temperature electrochemical performance, including their cyclability and rate capability. Spinel lithium manganese oxide (LiMn2O4) is a promising cathode material because of its high stability and abundance. However, it exhibits poor cycling performance at high temperatures owing to Mn dissolution. Herein we show that when stoichiometric lithium manganese oxide is coated with highly doped spinels, the resulting epitaxial coating has a hierarchical atomic structure consisting of cubic‐spinel, tetragonal‐spinel, and layered structures, and no interfacial phase is formed. In a practical application of the coating to doped spinel, the material retained 90 % of its capacity after 800 cycles at 60 °C. Thus, the formation of an epitaxial coating with a hierarchical atomic structure could enhance the electrochemical performance of LIB cathode materials while preventing large losses in capacity.  相似文献   

19.
Rational design and synthesis of advanced anode materials are extremely important for high‐performance lithium‐ion and sodium‐ion batteries. Herein, a simple one‐step hydrothermal method is developed for fabrication of N‐C@MoS2 microspheres with the help of polyurethane as carbon and nitrogen sources. The MoS2 microspheres are composed of MoS2 nanoflakes, which are wrapped by an N‐doped carbon layer. Owing to its unique structural features, the N‐C@MoS2 microspheres exhibit greatly enhanced lithium‐ and sodium‐storage performances including a high specific capacity, high rate capability, and excellent capacity retention. Additionally, the developed polyurethane‐assisted hydrothermal method could be useful for the construction of many other high‐capacity metal oxide/sulfide composite electrode materials for energy storage.  相似文献   

20.
《中国化学快报》2021,32(11):3601-3606
Potassium-ion batteries (KIBs) have become the most promising alternative to lithium-ion batteries for large-scale energy storage system due to their abundance and low cost. However, previous reports focused on the intercalation-type cathode materials usually showed an inferior capacity, together with a poor cyclic life caused by the repetitive intercalation of large-size K-ions, which hinders their practical application. Here, we combine the strategies of carbon coating, template etching and hydrothermal selenization to prepare yolk-shelled FeSe2@N-doped carbon nanoboxes (FeSe2@C NBs), where the inner highly-crystalline FeSe2 clusters are completely surrounded by the self-supported carbon shell. The integrated and highly conductive carbon shell not only provides a fast electron/ion diffusion channel, but also prevents the agglomeration of FeSe2 clusters. When evaluated as a conversion-type cathode material for KIBs, the FeSe2@C NBs electrode delivers a relatively high specific capacity of 257 mAh/g at 100 mA/g and potential platform of about 1.6 V, which endow a high energy density of about 411 Wh/kg. Most importantly, by designing a robust host with large internal void space to accommodate the volumetric variation of the inner FeSe2 clusters, the battery based on FeSe2@C NBs exhibits ultra-long cycle stability. Specifically, even after 700 cycles at 100 mA/g, a capacity of 221 mAh/g along with an average fading rate of only 0.02% can be retained, which achieves the optimal balance of high specific capacity and long-cycle stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号