首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclopropanes fused to pyrrolidines are important structural features found in a number of marketed drugs and development candidates. Typically, their synthesis involves the cyclopropanation of a dihydropyrrole precursor. Reported herein is a complementary approach which employs a palladium(0)‐catalyzed C? H functionalization of an achiral cyclopropane to close the pyrrolidine ring in an enantioselective manner. In contrast to aryl–aryl couplings, palladium(0)‐catalyzed C? H functionalizations involving the formation of C(sp3)? C(sp3) bonds of saturated heterocycles are very scarce. The presented strategy yields cyclopropane‐fused γ‐lactams from chloroacetamide substrates. A bulky Taddol phosphonite ligand in combination with adamantane‐1‐carboxylic acid as a cocatalyst provides the γ‐lactams in excellent yields and enantioselectivities.  相似文献   

2.
Reported herein is the distal γ‐C(sp3)?H olefination of ketone derivatives and free carboxylic acids. Fine tuning of a previously reported imino‐acid directing group and using the ligand combination of a mono‐N‐protected amino acid (MPAA) and an electron‐deficient 2‐pyridone were critical for the γ‐C(sp3)?H olefination of ketone substrates. In addition, MPAAs enabled the γ‐C(sp3)?H olefination of free carboxylic acids to form diverse six‐membered lactones. Besides alkyl carboxylic acids, benzylic C(sp3)?H bonds also could be functionalized to form 3,4‐dihydroisocoumarin structures in a single step from 2‐methyl benzoic acid derivatives. The utility of these protocols was demonstrated in large scale reactions and diversification of the γ‐C(sp3)?H olefinated products.  相似文献   

3.
Direct palladium‐catalysed cross‐couplings between organolithium reagents and (hetero)aryl halides (Br, Cl) proceed fast, cleanly and selectively at room temperature in air, with water as the only reaction medium and in the presence of NaCl as a cheap additive. Under optimised reaction conditions, a water‐accelerated catalysis is responsible for furnishing C(sp3)–C(sp2), C(sp2)–C(sp2), and C(sp)–C(sp2) cross‐coupled products, in competition with protonolysis, within a reaction time of 20 s, in yields of up to 99 %, and in the absence of undesired dehalogenated/homocoupling side products even when challenging secondary organolithiums serve as the starting material. It is worth noting that the proposed protocol is scalable and the catalyst and water can easily and successfully be recycled up to 10 times, with an E‐factor as low as 7.35.  相似文献   

4.
PdII‐catalyzed arylation of γ‐C(sp3)?H bonds of aliphatic acid‐derived amides was developed by using quinoline‐based ligands. Various γ‐aryl‐α‐amino acids were prepared from natural amino acids using this method. The influence of ligand structure on reactivity was also systematically investigated.  相似文献   

5.
A copper‐catalyzed three‐component reaction of alkenes, acetonitrile, and sodium azide afforded γ‐azido alkyl nitriles by formation of one C(sp3)−C(sp3) bond and one C(sp3)−N bond. The transformation allows concomitant introduction of two highly versatile groups (CN and N3) across the double bond. A sequence involving the copper‐mediated generation of a cyanomethyl radical and its subsequent addition to an alkene, and a C(sp3)−N bond formation accounted for the reaction outcome. The resulting γ‐azido alkyl nitrile can be easily converted into 1,4‐diamines, γ‐amino nitriles, γ‐azido esters, and γ‐lactams of significant synthetic value.  相似文献   

6.
The direct C(sp2)? C(sp3) cross‐coupling of diaryl zinc reagents with benzylic, primary, secondary, and tertiary alkyl halides proceeded in the absence of coordinating ethereal solvents at ambient temperature without the addition of a catalyst. The C(sp2)? C(sp3) cross‐coupling showed excellent functional‐group tolerance, and products were isolated in high yields, generally without the requirement for purification by chromatography. This process represents an expedient, operationally simple method for the construction of new C(sp2)? C(sp3) bonds.  相似文献   

7.
A method for site‐specific intermolecular γ‐C(sp3)?H functionalization of ketones has been developed using an α‐aminoxy acid auxiliary applying photoredox catalysis. Regioselective activation of an inert C?H bond is achieved by 1,5‐hydrogen atom abstraction by an oxidatively generated iminyl radical. Tertiary and secondary C‐radicals thus formed at the γ‐position of the imine functionality undergo radical conjugate addition to various Michael acceptors to provide, after reduction and imine hydrolysis, the corresponding γ‐functionalized ketones.  相似文献   

8.
Masked alcohols are particularly appealing as directing groups because of the ubiquity of hydroxy groups in organic small molecules. Herein, we disclose a general strategy for aliphatic γ‐C(sp3)?H functionalization guided by a masked alcohol. Specifically, we determine that sulfamate ester derived nitrogen‐centered radicals mediate 1,6‐hydrogen‐atom transfer (HAT) processes to guide γ‐C(sp3)?H chlorination. This reaction proceeds through a light‐initiated radical chain‐propagation process and is capable of installing chlorine atoms at primary, secondary, and tertiary centers.  相似文献   

9.
The first example of intermolecular amination of unactivated C(sp3)?H bonds by cyclic alkylamines mediated by Cu(OAc)2/O2 is reported. This method avoids the use of benzoyloxyamines as the aminating reagent, which are normally prepared from alkylamines in extra steps. A variety of unnatural β2, 2‐amino acid analogues are synthesized by this simple and efficient procedure. This approach offers a solution to the previous unmet challenge of C(sp3)?H/N?H activation for the formation of C(sp3)?N bonds.  相似文献   

10.
A mild, oxidant‐free, and selective Cp*CoIII‐catalyzed amidation of thioamides with robust dioxazolone amidating agents via C(sp3)−H bond activation to generate the desired amidated products is reported. The method is efficient and allows for the C−H amidation of a wide range of functionalized thioamides with aryl‐, heteroaryl‐, and alkyl‐substituted dioxazolones under the Cp*CoIII‐catalyzed conditions. The observed regioselectivity towards primary C(sp3)−H activation is supported by computational studies and the cyclometalation is proposed to proceed by means of an external carboxylate‐assisted concerted metalation/deprotonation mechanism. The reported method is a rare example of the use of a directing group other than the commonly used pyridine and quinolone classes for Cp*CoIII‐catalyzed C(sp3)−H functionalization and the first to exploit thioamides.  相似文献   

11.
The direct C(sp2) C(sp3) cross‐coupling of diaryl zinc reagents with benzylic, primary, secondary, and tertiary alkyl halides proceeded in the absence of coordinating ethereal solvents at ambient temperature without the addition of a catalyst. The C(sp2) C(sp3) cross‐coupling showed excellent functional‐group tolerance, and products were isolated in high yields, generally without the requirement for purification by chromatography. This process represents an expedient, operationally simple method for the construction of new C(sp2) C(sp3) bonds.  相似文献   

12.
The intramolecular coupling of two C(sp3)?H bonds to forge a C(sp3)?C(sp3) bond is enabled by 1,4‐Pd shift from a trisubstituted aryl bromide. Contrary to most C(sp3)?C(sp3) cross‐dehydrogenative couplings, this reaction operates under redox‐neutral conditions, with the C?Br bond acting as an internal oxidant. Furthermore, it allows the coupling between two moderately acidic primary or secondary C?H bonds, which are adjacent to an oxygen or nitrogen atom on one side, and benzylic or adjacent to a carbonyl group on the other side. A variety of valuable fused heterocycles were obtained from easily accessible ortho‐bromophenol and aniline precursors. The second C?H bond cleavage was successfully replaced with carbonyl insertion to generate other types of C(sp3)‐C(sp3) bonds.  相似文献   

13.
Intramolecular dehydrogenative cyclization of aliphatic amides was achieved on unactivated sp3 carbon atoms by a nickel‐catalyzed C?H bond functionalization process with the assistance of a bidentate directing group. The reaction favors the C?H bonds of β‐methyl groups over the γ‐methyl or β‐methylene groups. Additionally, a predominant preference for the β‐methyl C?H bonds over the aromatic sp2 C?H bonds was observed. Moreover, this process also allows for the effective functionalization of benzylic secondary sp3 C?H bonds.  相似文献   

14.
Cleavage of unstrained C−C bonds under mild, redox‐neutral conditions represents a challenging endeavor which is accomplished here in the context of a flexible, visible‐light‐mediated, γ‐functionalization of amines. In situ generated C‐centered radicals are harvested in the presence of Michael acceptors, thiols and alkyl halides to efficiently form new C(sp3)−C(sp3), C(sp3)−H and C(sp3)−Br bonds, respectively.  相似文献   

15.
Reported herein is a novel visible‐light photoredox system with Pd(PPh3)4 as the sole catalyst for the realization of the first direct cross‐coupling of C(sp3)−H bonds in N‐aryl tetrahydroisoquinolines with unactivated alkyl bromides. Moreover, intra‐ and intermolecular alkylations of heteroarenes were also developed under mild reaction conditions. A variety of tertiary, secondary, and primary alkyl bromides undergo reaction to generate C(sp3)−C(sp3) and C(sp2)−C(sp3) bonds in moderate to excellent yields. These redox‐neutral reactions feature broad substrate scope (>60 examples), good functional‐group tolerance, and facile generation of quaternary centers. Mechanistic studies indicate that the simple palladium complex acts as the visible‐light photocatalyst and radicals are involved in the process.  相似文献   

16.
Hypervalent‐iodine‐mediated oxidative coupling of the two aryl groups in either 2‐acylamino‐N‐phenyl‐benzamides or 2‐hydroxy‐N‐phenylbenzamides, with concomitant insertion of the ortho‐substituted N or O atom into the tether, has been described for the first time. This unusual metal‐free rearrangement reaction involves an oxidative C(sp2)? C(sp2) aryl–aryl bond formation, cleavage of a C(sp2)? C(O) bond, and a lactamization/lactonization. Furthermore, unsymmetrical diaryl compounds can be easily obtained by removing the tether within the cyclized product.  相似文献   

17.
Cleavage of unstrained C−C bonds under mild, redox‐neutral conditions represents a challenging endeavor which is accomplished here in the context of a flexible, visible‐light‐mediated, γ‐functionalization of amines. In situ generated C‐centered radicals are harvested in the presence of Michael acceptors, thiols and alkyl halides to efficiently form new C(sp3)−C(sp3), C(sp3)−H and C(sp3)−Br bonds, respectively.  相似文献   

18.
Alkyl aryl ethers are an important class of compounds in medicinal and agricultural chemistry. Catalytic C(sp3)?O cross‐coupling of alkyl electrophiles with phenols is an unexplored disconnection strategy to the synthesis of alkyl aryl ethers, with the potential to overcome some of the major limitations of existing methods such as C(sp2)?O cross‐coupling and SN2 reactions. Reported here is a tandem photoredox and copper catalysis to achieve decarboxylative C(sp3)?O coupling of alkyl N‐hydroxyphthalimide (NHPI) esters with phenols under mild reaction conditions. This method was used to synthesize a diverse set of alkyl aryl ethers using readily available alkyl carboxylic acids, including many natural products and drug molecules. Complementarity in scope and functional‐group tolerance to existing methods was demonstrated.  相似文献   

19.
The first example of PdII‐catalyzed γ‐C(sp3)?H functionalization of aliphatic and benzoheteroaryl aldehydes has been developed using a transient ligand and an external ligand, concurrently. A wide array of γ‐arylated aldehydes were readily accessed without preinstalling internal directing groups. The catalytic mechanism was studied by performing deuterium‐labelling experiments, which indicated that the γ‐C(sp3)?H bond cleavage is the rate‐limiting step during the reaction process. This reaction could be performed on a gram scale, and also demonstrated its potential application in the synthesis of new mechanofluorochromic materials with blue‐shifted mechanochromic properties.  相似文献   

20.
The non‐enzymatic acylative kinetic resolution of challenging aryl–alkenyl (sp2 vs. sp2) substituted secondary alcohols is described, with effective enantiodiscrimination achieved using the isothiourea organocatalyst HyperBTM (1 mol %) and isobutyric anhydride. The kinetic resolution of a wide range of aryl–alkenyl substituted alcohols has been evaluated, with either electron‐rich or naphthyl aryl substituents in combination with an unsubstituted vinyl substituent providing the highest selectivity (S=2–1980). The use of this protocol for the gram‐scale (2.5 g) kinetic resolution of a model aryl–vinyl (sp2 vs. sp2) substituted secondary alcohol is demonstrated, giving access to >1 g of each of the product enantiomers both in 99:1 e.r.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号