首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carotenoid microcrystals, extracted from cells of carrot roots and consisting of 95 % of achiral β‐carotene, exhibit a very intense chiroptical (ECD and ROA) signal. The preferential chirality of crystalline aggregates that consist mostly of achiral building blocks is a newly observed phenomenon in nature, and may be related to asymmetric information transfer from the chiral seeds (small amount of α‐carotene or lutein) present in carrot cells. To confirm this hypothesis, we synthesized several model aggregates from various achiral and chiral carotenoids. Because of the sergeant‐and‐soldier behavior, a small number of chiral sergeants (α‐carotene or astaxanthin) force the achiral soldier molecules (β‐ or 11,11′‐[D2]‐β‐carotene) to jointly form supramolecular assemblies of induced chirality. The chiral amplification observed in these model systems confirmed that chiral microcrystals appearing in nature might consist predominantly of achiral building blocks and their supramolecular chirality might result from the co‐crystallization of chiral and achiral analogues.  相似文献   

2.
Linear modules equipped with two terminal hydroxamic acid groups act as the building block of diverse two‐dimensional supramolecular motifs and patterns with room‐temperature stability on the close‐packed single‐crystal surfaces of silver and gold, revealing a complex self‐assembly scenario. By combining multiple investigation techniques (scanning tunneling microscopy, atomic force microscopy, X‐ray photoelectron spectroscopy, and density functional theory calculations), we analyze the characteristics of the ordered assemblies which range from close‐packed structures to polyporous networks featuring an exceptionally extended primitive unit cell with a side length exceeding 7 nm. The polyporous network shows potential for hosting and promoting the formation of chiral supramolecules, whereas a transition from 1D chiral randomness to an ordered racemate is discovered in a different porous phase. We correlate the observed structural changes to the adaptivity of the building block and surface‐induced changes in the chemical state of the hydroxamic acid functional group.  相似文献   

3.
Chirality‐driven self‐sorting is envisaged to efficiently control functional properties in supramolecular materials. However, the challenge arises because of a lack of analytical methods to directly monitor the enantioselectivity of the resulting supramolecular assemblies. Presented herein are two fluorescent core‐substituted naphthalene‐diimide‐based donor and acceptor molecules with minimal structural mismatch and they comprise strong self‐recognizing chiral motifs to determine the self‐sorting process. As a consequence, stereoselective supramolecular polymerization with an unprecedented chirality control over energy transfer has been achieved. This chirality‐controlled energy transfer has been further exploited as an efficient probe to visualize microscopically the chirality driven self‐sorting.  相似文献   

4.
Achieving a large dissymmetry factor (glum) is a challenge in the field of circularly polarized luminescence (CPL). A chiral charge‐transfer (CT) system consisting of chiral electron donor and achiral electron acceptor shows bright circularly polarized emission with large glum value. The chiral emissive CT complexes could be fabricated through various approaches, such as grinding, crystallization, spin coating, and gelatinization, by simply blending chiral donor and achiral acceptor. The structural synergy originating from π–π stacking and strong CT interactions resulted in the long‐range ordered self‐assembly, enabling the formation of supramolecular gels. Benefiting from the large magnetic dipole transition moment in the CT state, the CPL activity of CT complexes exhibited large circular polarization. Our design strategy of the chiral emissive CT complexes is expected to help the development of new molecular engineering strategies for designing highly efficient CPL‐active materials.  相似文献   

5.
The enantiomeric state of a supramolecular copper catalyst can be switched in situ in ca. five seconds. The dynamic property of the catalyst is provided by the non‐covalent nature of the helical assemblies supporting the copper centers. These assemblies are formed by mixing an achiral benzene‐1,3,5‐tricarboxamide (BTA) phosphine ligand (for copper coordination) and both enantiomers of a chiral phosphine‐free BTA co‐monomer (for chirality amplification). The enantioselectivity of the hydrosilylation reaction is fixed by the BTA enantiomer in excess, which can be altered by simple BTA addition. As a result of the complete and fast stereochemical switch, any combination of the enantiomers was obtained during the conversion of a mixture of two substrates.  相似文献   

6.
Scanning tunnelling microscope observations at the 1‐phenyloctane/graphite interface reveal how chiral structural information at the molecular level is transferred and expressed structurally at the 2D supramolecular level for a porous system. The chirality of self‐assembled molecular networks formed by chiral dehydrobenzo[12]annulene (cDBA) derivatives having three chiral chains and three achiral chains, alternatingly, is compared with those of cDBAs having six chiral chains reported previously. While for all cDBAs homochiral surfaces are formed, their handedness is not simply a reflection of the absolute configuration of the stereogenic centres. Both the number of stereogenic centres as well as the length of the achiral chains determine the supramolecular handedness, providing a deep insight into the supramolecular chirality induction mechanisms at play. Moreover, these cDBAs act to induce chirality in porous networks formed by achiral DBAs.  相似文献   

7.
Chiral head groups have been introduced into water‐soluble hydroxyl‐terminated nonionic amphiphiles and the impact of the head group stereochemistry on the supramolecular ultrastructures has been studied. Enantiomeric isomers were compared with the achiral meso form and the racemic mixture by means of cryogenic transmission electron microscopy and circular dichroism spectroscopy. Structurally, all amphiphiles are composed of the first‐generation hydrophilic polyglycerol head group coupled to a single hydrophobic hexadecyl chain through an amide linkage and diaromatic spacer. The enantiomers aggregate to form twisted ribbons with uniform handedness, whereas the meso stereoisomer and racemic mixture produce elongated assemblies, namely, tubules and platelets, but without a chiral ultrastructure. Simulations on the molecular packing geometries of the stereoisomers indicate different preferential assembly routes that explain the individual supramolecular aggregation behavior.  相似文献   

8.
The aggregation of (pro)chiral/achiral molecules into crystalline structures at interfaces forms conglomerates, racemates, and solid solutions, comparable to known bulk phases. Scanning tunneling microscopy and Monte Carlo simulations were employed to uncover a distinct racemic phase, expressing 1D disordered chiral sorting through random tiling in surface‐confined supramolecularly assembled achiral 4,4′′‐diethynyl‐1,1′:4′,1′′‐terphenyl molecules. The configurational entropy of the 1D disordered racemic tiling phase was verified by analytical modeling, and found to lie between that of a perfectly ordered 2D racemate and a racemic solid solution.  相似文献   

9.
Understanding the roles of various parameters in orchestrating the preferential chiral molecular organization in supramolecular self‐assembly processes is of great significance in designing novel molecular functional systems. Cyclic dipeptide (CDP) chiral auxiliary‐functionalized naphthalenediimides (NCDPs 1 – 6 ) have been prepared and their chiral self‐assembly properties have been investigated. Detailed photophysical and circular dichroism (CD) studies have unveiled the crucial role of the solvent in the chiral aggregation of these NCDPs. NCDPs 1 – 3 form supramolecular helical assemblies and exhibit remarkable chiroptical switching behaviour (M‐ to P‐type) depending on the solvent composition of HFIP and DMSO. The strong influence of solvent composition on the supramolecular chirality of NCDPs has been further corroborated by concentration and solid‐state thin‐film CD studies. The chiroptical switching between supramolecular aggregates of opposite helicity (M and P) has been found to be reversible, and can be achieved through cycles of solvent removal and redissolution in solvent mixtures of specific composition. The control molecular systems (NCDPs 4 – 6 ), with an achiral or D ‐isomer second amino acid in the CDP auxiliary, did not show chiral aggregation properties. The substantial roles of hydrogen bonding and π–π interactions in the assembly of the NCDPs have been validated through nuclear magnetic resonance (NMR), photophysical, and computational studies. Quantum chemical calculations at the ab initio, semiempirical, and density functional theory levels have been performed on model systems to understand the stabilities of the right (P‐) and left (M‐) handed helical supramolecular assemblies and the nature of the intermolecular interactions. This study emphasizes the role of CDP chiral auxiliaries on the solvent‐induced helical assembly and reversible chiroptical switching of naphthalenediimides.  相似文献   

10.
A “chirality driven self‐sorting” strategy is introduced for the controlled supramolecular organization of donor (D) and acceptor (A) molecules in multicomponent assemblies. The trans‐1,2‐bis(amido)cyclohexane (trans‐BAC) has been identified as a supramolecular motif with strong homochiral recognition to direct this chirality controlled assembly process of enantiomers in solution. Stereoselective supramolecular polymerization of trans‐BAC appended naphthalene diimide monomers (NDIs) has been probed in detail by spectroscopic and mechanistic investigations. This chirality‐driven self‐sorting design of enantiomeric components also offers to realize mixed and segregated D‐A stacks by supramolecular co‐assembly of the NDI acceptors with trans‐BAC appended dialkoxynaphthalene (DAN) donor monomers. Such an unprecedented chirality control on D‐A organization paves the way for the creation of supramolecular p‐n nanostructures with controlled molecular‐level organization.  相似文献   

11.
Chiral amplification is an interesting phenomenon in supramolecular chemistry mainly observed in complicated systems in which cooperative effect dominate. Herein, chiral, supramolecular, propeller‐like architectures have been constructed through coassembly of an achiral disk‐shaped molecule and chiral amino acid derivatives driven by intermolecular hydrogen bonding. Both the “sergeants‐and‐soldiers” principle and “majority‐rules” effect are applicable in these discrete four‐component supermolecules, which are the simplest supramolecular system ever reported that exhibit chiral amplification.  相似文献   

12.
Hierarchical supramolecular chiral liquid‐crystalline (LC) polymer assemblies are challenging to construct in situ in a controlled manner. Now, polymerization‐induced chiral self‐assembly (PICSA) is reported. Hierarchical supramolecular chiral azobenzene‐containing block copolymer (Azo‐BCP) assemblies were constructed with π–π stacking interactions occurring in the layered structure of Azo smectic phases. The evolution of chirality from terminal alkyl chain to Azo mesogen building blocks and further induction of supramolecular chirality in LC BCP assemblies during PICSA is achieved. Morphologies such as spheres, worms, helical fibers, lamellae, and vesicles were observed. The morphological transition had a crucial effect on the chiral expression of Azo‐BCP assemblies. The supramolecular chirality of Azo‐BCP assemblies destroyed by 365 nm UV irradiation can be recovered by heating–cooling treatment; this dynamic reversible achiral–chiral switching can be repeated at least five times.  相似文献   

13.
The adsorption behavior of 2H‐tetrakis(3,5‐di‐tert‐butyl)phenylporphyrin (2HTTBPP) on Cu(110) and Cu(110)–(2×1)O surfaces have been investigated by using variable‐temperature scanning tunneling microscopy (STM) under ultrahigh vacuum conditions. On the bare Cu(110) surface, individual 2HTTBPP molecules are observed. These molecules are immobilized on the surface with a particular orientation with respect to the crystallographic directions of the Cu(110) surface and do not form supramolecular aggregates up to full monolayer coverage. In contrast, a chiral supramolecular structure is formed on the Cu(110)–(2×1)O surface, which is stabilized by van der Waals interactions between the tert‐butyl groups of neighboring molecules. These findings are explained by weakened molecule–substrate interactions on the Cu(110)–(2×1)O surface relative to the bare Cu(110) surface. By comparison with the corresponding results of Cu–tetrakis(3,5‐di‐tert‐butyl)phenylporphyrin (CuTTBPP) on Cu(110) and Cu(110)–(2×1)O surfaces, we find that the 2HTTBPP molecules can self‐metalate on both surfaces with copper atoms from the substrate at room temperature (RT). The possible origins of the self‐metalation reaction at RT are discussed. Finally, peculiar irreversible temperature‐dependent switching of the intramolecular conformations of the investigated molecules on the Cu(110) surface was observed and interpreted.  相似文献   

14.
Aqueous solutions of the achiral, monomeric, nucleobase mimics (2,4,6‐triaminopyrimidine, TAP, and a cyanuric acid derivative, CyCo6) spontaneously assemble into macroscopic homochiral domains of supramolecular polymers. These assemblies exhibit a high degree of chiral amplification. Addition of a small quantity of one handedness of a chiral derivative of CyCo6 generates exclusively homochiral structures. This system exhibits the highest reported degree of chiral amplification for dynamic helical polymers or supramolecular helices. Significantly, homochiral polymers comprised of hexameric rosettes with structural features that resemble nucleic acids are formed from mixtures of cyanuric acid (Cy) and ribonucleotides (l‐, d ‐pTARC) that arise spontaneously from the reaction of TAP with the sugars. These findings support the hypothesis that nucleic acid homochirality was a result of symmetry breaking at the supramolecular polymer level.  相似文献   

15.
The development of synthetic helical structures undergoing stimuli‐responsive chirality transformations is important for an understanding of the role of chirality in natural systems. However, controlling supramolecular chirality in entropically driven assemblies in aqueous media is challenging. To develop stimuli‐responsive assemblies, we designed and synthesized pyrazine derivatives with l ‐alanine groups as chiral building blocks. These systems undergo self‐assembly in aqueous media to generate helical fibers and the embedded alanine groups transfer their chirality to the assembled structures. Furthermore, these helical fibers undergo a Ni2+‐induced chirality transformation. The study demonstrates the role of intermolecular hydrogen bonding, π–π stacking, and the hydrophobic effect in the Ni2+‐mediated transition of helical fibers to supercoiled helical ensembles which mimic the formation of superstructures in biopolymers.  相似文献   

16.
介绍了超分子手性的基本构筑方式及其特点,分别从手性分子组装、手性分子诱导非手性分子及非手性分子组装等3个方面对最近几年来在手性超分子组装领域内的重要成果及最新进展进行了综述,并对这一领域的发展前景作了展望。  相似文献   

17.
2,4‐Diamino‐6‐phenyl‐1,3,5‐triazines carrying a single oligo(ethylene oxide) (EO) chain form an optically isotropic mesophase composed of a conglomerate of macroscopic chiral domains with opposite sense of chirality even though the constituent molecules are achiral. This mesophase was proposed to result from the helical packing of hydrogen‐bonded triazine aggregates, providing long‐range chirality synchronization. The results provide first evidence for macroscopic achiral symmetry breaking upon conglomerate formation in an amorphous isotropic phase formed by hydrogen‐bonded associates of simple N‐heterocycles that are related to prebiotic molecules.  相似文献   

18.
The crystal structures and hydrogen‐bonding patterns of 3‐phenylpropylammonium benzoate, C9H14N+·C7H5O2, (I), and 3‐phenylpropylammonium 3‐iodobenzoate, C9H14N+·C7H4IO2, (II), are reported and compared. The addition of the I atom on the anion in (II) produces a different hydrogen‐bonding pattern to that of (I). In addition, the supramolecular heterosynthon of (II) produces a chiral crystal packing not observed in (I). Compound (I) packs in a centrosymmetric fashion and forms achiral one‐dimensional hydrogen‐bonded columns through charge‐assisted N—H...O hydrogen bonds. Compound (II) packs in a chiral space group and forms helical one‐dimensional hydrogen‐bonded columns with 21 symmetry, consisting of repeating R43(10) hydrogen‐bonded rings that are commonly observed in ammonium carboxylate salts containing chiral molecules. This hydrogen‐bond pattern, which has been observed repeatedly in ammonium carboxylate salts, thus provides a means of producing chiral crystal structures from achiral molecules.  相似文献   

19.
The design and fabrication of quantum dots (QDs) with circularly polarized luminescence (CPL) has been a great challenge in developing chiroptical materials. We herein propose an alternative to the use of chiral capping reagents on QDs for the fabrication of CPL‐active QDs that is based on the supramolecular self‐assembly of achiral QDs with chiral gelators. Full‐color‐tunable CPL‐active QDs were obtained by simple mixing or gelation of a chiral gelator and achiral 3‐mercaptopropionic acid capped QDs. In addition, the handedness of the CPL can be controlled by the supramolecular chirality of the gels. Moreover, QDs with circularly polarized white light emission were fabricated for the first time by tuning the blending ratio of colorful QDs in the gel. The chirality transfer in the co‐assembly of the achiral QDs with the gelator and the spacer effect of the capping reagents on the QD surface are also discussed. This work provides new insight into the design of functional chiroptical materials.  相似文献   

20.
Stereoselective electrosynthesis of the first individual (f,tA)‐ and (f,tC)‐1,4‐fullerene derivatives with a non‐inherently chiral functionalization pattern is described, as well as the first example of an optically pure protected primary amino acid directly linked to the fullerene through only the chiral α‐amino‐acid carbon atom. An application of an auxiliary chiral nickel‐Schiff base moiety as derivatizing agent allowed separation of (f,tA)‐ and (f,tC)‐1,4‐fullerene derivatives using an achiral stationary phase, a separation which has never been done before.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号