首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The decoherence speed limit (DSL) of a single impurity atom immersed in a Bose‐Einstein‐condensed (BEC) reservoir when the impurity atom is in a double‐well potential is studied. It is demonstrated how the DSL of the impurity atom can be manipulated by engineering the BEC reservoir and the impurity potential within experimentally realistic limits. It is shown that the DSL can be controlled by changing key parameters such as the condensate scattering length, the effective dimension of the BEC reservoir, and the spatial configuration of the double‐well potential imposed on the impurity. The physical mechanisms of controlling the DSL at root of the spectral density of the BEC reservoir are uncovered.  相似文献   

2.
We use the stochastic limit technique to predict a new phenomenon concerning a two-level atom with degenerate ground state interacting with a quantum field. We show, that the field drives the state of the atom to a stationary state, which is non-unique, but depends on the initial state of the system through some conserved quantities. This non uniqueness follows from the degeneracy of the ground state of the atom, and when the ground subspace is two-dimensional, the family of stationary states will depend on a one-dimensional parameter. Only one of the stationary states in this family is a pure state and it coincides with the known trapped state. This means that by controlling the initial state (input) we can control the final state (output). The quantum Markov semigroup obtained in the limit admits an invariant pure state, but it is not true that all the extremal invariant states are pure. This is an interesting phenomenon also from mathematical point of view and its meaning will be discussed in a future paper. PACS numbers: 31.15.-p, 31.15.Gy, 32.80.Pj, 32.80.Qk  相似文献   

3.
Using the Minimal Irreversible Quantum Mechanicsformalism, it is demonstrated that the quantum regimecan be considered as the transient phase while the finalclassical equilibrium regime is the permanent state. A basis where exact matrix decoherenceappears for these final states is found. The appearanceof a classical universe in quantum gravity models is thecosmological version of this problem.  相似文献   

4.
We analyze the thermodynamic limit of the Hamiltonian, states and observables, of a system containing an oscillator interacting with a thermal bath We use the results to a compare environment and self induced decoherence.  相似文献   

5.
In the present study, time evolution of quantum Cramer–Rao bound of entangled N00N state, as phase sensitivity, is determined by the aid of quantum estimation theory in the presence decoherence channels. Also, the dynamic quantum process as decoherence approach is characterized by quantum fisher information flow and entanglement amount in order to distinguish between Markovian and Non-Markovian process. The comparison between quantum fisher information and quantum fisher information flow assists to comprehend the phase sensitivity evolution corresponding to Non-Markovian and Markovian process. Furthermore, as result of backflow of information from the environment to system, the phase sensitivity corresponding memory effect of environment are revived after complete decay and increase in the few times.  相似文献   

6.
The quantum speed of evolution for the phase covariant map is investigated. This involves absorption, emission, and dephasing processes. The maps under various combinations of the above processes are considered to investigate the effect of phase covariant maps on quantum speed limit time. For absorption-free phase covariant maps, combinations of dissipative and CP-(in)divisible (non)-Markovian dephasing noises are considered. The role of coherence-mixedness balance on the speed limit time is checked in the presence of both vacuum and finite temperature effects. The rate at which Holevo's information changes and the action quantum speed of evolution for specific cases of the phase covariant map are also investigated.  相似文献   

7.
Quantum speed limit (QSL) time under noise has drawn considerable attention in real quantum computational processes. Though non-Markovian noise is found to be able to accelerate quantum evolution for a damped Jaynes-Cummings model, in this work we show that non-Markovianity will slow down the quantum evolution of an experimentally controllable photon system. As an application, QSL time of a photon can be controlled by regulating the relevant environment parameter properly, which nearly reaches the currently available photonic experimental technology.  相似文献   

8.
An “almost diagonal” reduced density matrix (in coordinate representation) is usually a result of environment induced decherence and is considered the sign of classical behavior. We show that the proton of a ground state hydrogen atom can indeed possess such a density matrix. This example demonstrates that the “almost diagonal” structure may be derived from an interaction with a low number of degrees of freedom which play the role of the environment. We also show that decoherence effects in our example can only be observed if the interaction with the measuring device is significantly faster than the interaction with the environment (the electron). In the opposite case, when the interaction with the environment is significant during the measurement process, coherence is maintained. Finally, we propose a neutron scattering experiment on cold He atoms to observe decoherence which shows up as an additional positive contribution to the differential scattering cross section. This contribution is inversely proportional to the bombarding energy.  相似文献   

9.
10.
The present paper outlines a basic theoretical treatment of decoherence and dephasing effects in interferometry based on single component Bose–Einstein condensates in double potential wells, where two condensate modes may be involved. Results for both two mode condensates and the simpler single mode condensate case are presented. The approach involves a hybrid phase space distribution functional method where the condensate modes are described via a truncated Wigner representation, whilst the basically unoccupied non-condensate modes are described via a positive P representation. The Hamiltonian for the system is described in terms of quantum field operators for the condensate and non-condensate modes. The functional Fokker–Planck equation for the double phase space distribution functional is derived. Equivalent Ito stochastic equations for the condensate and non-condensate fields that replace the field operators are obtained, and stochastic averages of products of these fields give the quantum correlation functions that can be used to interpret interferometry experiments. The stochastic field equations are the sum of a deterministic term obtained from the drift vector in the functional Fokker–Planck equation, and a noise field whose stochastic properties are determined from the diffusion matrix in the functional Fokker–Planck equation. The stochastic properties of the noise field terms are similar to those for Gaussian–Markov processes in that the stochastic averages of odd numbers of noise fields are zero and those for even numbers of noise field terms are the sums of products of stochastic averages associated with pairs of noise fields. However each pair is represented by an element of the diffusion matrix rather than products of the noise fields themselves, as in the case of Gaussian–Markov processes. The treatment starts from a generalised mean field theory for two condensate modes, where generalised coupled Gross–Pitaevskii equations are obtained for the modes and matrix mechanics equations are derived for the amplitudes describing possible fragmentations of the condensate between the two modes. These self-consistent sets of equations are derived via the Dirac–Frenkel variational principle. Numerical studies for interferometry experiments would involve using the solutions from the generalised mean field theory in calculations for the stochastic fields from the Ito stochastic field equations.  相似文献   

11.
Decoherence and the approach to the classical final limit are studied in twosimilar cases: the Mott and the cosmological problems.  相似文献   

12.
The Conditional Probability Interpretation of Quantum Mechanics replaces the abstract notion of time used in standard Quantum Mechanics by the time that can be read off from a physical clock. The use of physical clocks leads to apparent non-unitary and decoherence. Here we show that a close approximation to standard Quantum Mechanics can be recovered from conditional Quantum Mechanics for semi-classical clocks, and we use these clocks to compute the minimum decoherence predicted by the Conditional Probability Interpretation.  相似文献   

13.
混沌微扰导致的量子退相干   总被引:1,自引:0,他引:1       下载免费PDF全文
研究了无限深势阱内两个粒子的耦合导致的量子退相干和量子行为趋近于经典混沌运动的过程.当一个粒子的质量减小时,它对另外一个粒子经典混沌扩散的影响逐渐减小.强混沌机理使得轻粒子的作用类似于噪声,从而有效得抑制另外一个粒子的量子相干性.轻粒子的退相干效应随着有效普朗克常数的减小逐渐增强.在这个过程中,另外一个粒子的量子扩散从动力学局域化行为逐渐过渡到经典极限.当有效普朗克常数足够小时。它的量子扩散与经典混沌扩散相符合.该粒子的线性墒随时间演化迅速趋近于饱和值,并且饱和值随着有效普朗克常数减小以指数函数形式从零趋近于l.  相似文献   

14.
In this article, single, and two-qubit central spin systems interacting with spin baths are considered and their dynamical properties are discussed. The cases of interacting and non-interacting spin baths are considered and the quantum speed limit (QSL) time of evolution is investigated. The impact of the size of the spin bath on the quantum speed limit for a single qubit central spin model is analyzed. The quantum correlations for (non-)interacting two central spin qubits are estimated and their dynamical behavior with that of QSL time under various conditions are compared. How QSL time could be availed to analyze the dynamics of quantum correlations is shown.  相似文献   

15.
The quantum speed limit (QSL) is the theoretical lower limit of the time for a quantum system to evolve from a given state to another one. Interestingly, it has been shown that non-Markovianity can be used to speed-up the dynamics and to lower the QSL time, although this behaviour is not universal. In this paper, we further carry on the investigation on the connection between QSL and non-Markovianity by looking at the effects of P- and CP-divisibility of the dynamical map to the quantum speed limit. We show that the speed-up can also be observed under P- and CP-divisible dynamics, and that the speed-up is not necessarily tied to the transition from P-divisible to non-P-divisible dynamics.  相似文献   

16.
17.
Suppose a quantum experiment includes one or more random processes. Then the results of repeated measurements may appear consistent with irreversible decoherence even if the system’s evolution prior to measurement is reversible and unitary. Two thought experiments are constructed as examples.  相似文献   

18.
The time development of the reduced density matrix for a quantum oscillator damped by coupling it to an ohmic environment is calculated via an identity of the Debye-Waller form. Results obtained some years ago by Hakim and the author in the free-particle limit(10) are thus recovered. The evolution of a free particle in a prepared initial state is examined, and a previously published exchange(5,9) is illuminated with figures showing no decoherence without dissipation. PACS number: 03.75.Ss  相似文献   

19.
A pair of harmonic oscillators come in contact and then separate. This could be a model of an atom encountering an electromagnetic field. We explore the coherence properties of the resulting state as a function of the sort of initial condition used. A surprising result is that if one imagines a large collection of these objects repeatedly coming in contact and separating, the asymptotic distribution functions are not Boltzmann distributions, but rather exponentials with the same rate of dropoff.  相似文献   

20.
International Journal of Theoretical Physics - We study the QSLT of the two-level system coupling to a single mode cavity which is driven by a laser field under the feedback control, and focus on...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号