首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The catalytic systems [(BPMEN)FeII(CH3CN)2](ClO4)2/H2O2/CH3OOH and [(TPA)FeII(CH3CN)2](ClO4)2/H2O2/CH3OOH, where BPMEN = N,N′-dimethyl-N,N′-bis(2-pyridylmethyl)-1,2-diaminoethane and TPA = tris(2-pyridylmethyl)amine, provide selective olefin epoxidation. Proton NMR studies showed that the mononuclear iron(IV) oxo complexes [(L)FeIV=O]2+, with L = BPMEN or TPA, are present in the cited catalytic systems. These intermediates are the decomposition products of the acylperoxo complexes [(L)FeIII-O3CCH3]2+. Such a complex was observed by the 2H NMR technique at low temperatures. The [(L)FeIV=O]2+ and [(L)FeV=O]3+ oxo complexes are possible active species in the studied catalytic systems.  相似文献   

2.
Recent efforts to model the reactivity of iron oxygenases have led to the generation of nonheme FeIII(OOH) and FeIV(O) intermediates from FeII complexes and O2 but using different cofactors. This diversity emphasizes the rich chemistry of nonheme Fe(ii) complexes with dioxygen. We report an original mechanistic study of the reaction of [(TPEN)FeII]2+ with O2 carried out by cyclic voltammetry. From this FeII precursor, reaction intermediates such as [(TPEN)FeIV(O)]2+, [(TPEN)FeIII(OOH)]2+ and [(TPEN)FeIII(OO)]+ have been chemically generated in high yield, and characterized electrochemically. These electrochemical data have been used to analyse and perform simulation of the cyclic voltammograms of [(TPEN)FeII]2+ in the presence of O2. Thus, several important mechanistic informations on this reaction have been obtained. An unfavourable chemical equilibrium between O2 and the FeII complex occurs that leads to the FeIII-peroxo complex upon reduction, similarly to heme enzymes such as P450. However, unlike in heme systems, further reduction of this latter intermediate does not result in O–O bond cleavage.  相似文献   

3.
ABSTRACT

The oxidation of a series of aryl 1-methyl-1-phenylethyl sulfides with H2O2 catalyzed by the two tetradentate nonheme-iron complexes [(PDP)FeII(SbF6)2] and [(BPMCN)FeII(OTf)2] occurs by an electron transfer-oxygen transfer (ET/OT) mechanism as supported by the observation of products deriving from fragmentation of the corresponding radical cations in association with S-oxidation products (sulfoxides).  相似文献   

4.
We report two new FeIII complexes [L1FeIII(H2O)](OTf)2 and [L2FeIII(OTf)] , obtained by replacing pyridines by phenolates in a known non-heme aminopyridine iron complex. While the original, starting aminopyridine [(L5 2 )FeII(MeCN)](PF6) complex is stable in air, the potentials of the new FeIII/II couples decrease to the point that [L2FeII] spontaneously reduces O2 to superoxide. We used it as an O2 activator in an electrochemical setup, as its presence allows to generate superoxide at a much more accessible potential (>500 mV gain). Our aim was to achieve substrate oxidation via the reductive activation of O2. While L2FeIII(OTf) proved to be a good O2 activator but a poor oxidation system, its association with another complex (TPEN)FeII(PF6)2 generates a complementary tandem couple for electro-assisted oxidation of substrates, working at a very accessible potential: upon reduction, L2FeIII(OTf) activates O2 to superoxide and transfers it to (TPEN)FeII(PF6)2 leading in fine to the oxidation of thioanisole.  相似文献   

5.
The ligand H6ioan has been used to synthesize the three dinuclear complexes [(ioan)MnIITiIV], [(ioan)FeIITiIV], and [(ioan)FeIIITiIV]+. The face-sharing bridging mode of the three phenolates provides short M-TiIV distances of ≈3.0 Å. Mössbauer spectra of [(ioan)FeIIITiIV]+ show a magnetically split six-line spectrum at 3 K in zero magnetic field demonstrating a slow magnetic relaxation. Magnetic measurements provide a zero-field splitting of |D|=5 cm−1 in [(ioan)FeIITiIV]. EPR spectroscopy demonstrates sizable zero-field splittings of the S=5/2 spin systems of [(ioan)MnIITiIV] (D=0.246 cm−1) and [(ioan)FeIIITiIV]+ (D<−1 cm−1) that can be related to enforced covalency of the M-Oph bonds. [(ioan)FeIIITiIV]+ exhibits a reversible reduction at −0.26 V vs. Fc+/Fc demonstrating the facile accessibility of FeIII and FeII. In contrast to an irreversible oxidation in [(ioan)NiIITiIV] at 0.78 V vs. Fc+/Fc, the reversible oxidation at 0.25 V vs. Fc+/Fc in [(ioan)MnIITiIV] indicates even the access of MnIII. These results indicate that pentanuclear complexes [(ioan)FeM1M2M1Fe(ioan)]n+ are meaningful targets to access electron delocalization in mixed-valence systems over five ions due to the facile accessibility of both FeII and FeIII in the terminal positions. This study provides important local spin-Hamiltonian and Mössbauer parameters that will be essential for the understanding of the potentially complicated electronic structure in the anticipated pentanuclear complexes.  相似文献   

6.
μ‐Oxodiiron(III) species are air‐stable and unreactive products of autoxidation processes of monomeric heme and non‐heme iron(II) complexes. Now, the organometallic [(LNHC)FeIII‐(μ‐O)‐FeIII(LNHC)]4+ complex 1 (LNHC is a macrocyclic tetracarbene) is shown to be reactive in C?H activation without addition of further oxidants. Studying the oxidation of dihydroanthracene, it was found that 1 thermally disproportionates in MeCN solution into its oxoiron(IV) ( 2 ) and iron(II) components; the former is the active species in the observed oxidation processes. Possible cleavage scenarios for 1 are shown by scrambling experiments and structural characterization of an unprecedented adduct of 1 and oxoiron(IV) complex 2 . Kinetic analysis gave an equilibrium constant for the disproportionation of 1 , which is very small (Keq=7.5±2.5×10?8 m ). Increasing Keq might by a useful strategy for circumventing the formation of dead‐end μ‐oxodiiron(III) products during Fe‐based homogeneous oxidation catalysis.  相似文献   

7.
Kinetic and mechanistic studies on the formation of an oxoiron(IV) porphyrin cation radical bearing a thiolate group as proximal ligand are reported. The SR complex, a functional enzyme mimic of P450, was oxidized in peroxo‐shunt reactions under different experimental conditions with variation of solvent, temperature, and identity and excess of oxidant in the presence of different organic substrates. Through the application of a low‐temperature rapid‐scan stopped‐flow technique, the reactive intermediates in the SR catalytic cycle, such as the initially formed SR acylperoxoiron(III) complex and the SR high‐valent iron(IV) porphyrin cation radical complex [( SR .+)FeIV?O], were successfully identified and kinetically characterized. The oxidation of the SR complex under catalytic conditions provided direct spectroscopic information on the reactivity of [( SR .+)FeIV?O] towards the oxidation of selected organic substrates. Because the catalytically active species is a synthetic oxoiron(IV) porphyrin cation radical bearing a thiolate proximal group, the effect of the strong electron donor ligand on the formation and reactivity/stability of the SR high‐valent iron species is addressed and discussed in the light of the reactivity pattern observed in substrate oxygenation reactions catalyzed by native P450 enzyme systems.  相似文献   

8.
Oxidation of the iron(II) precursor [(L1)FeIICl2], where L1 is a tetradentate bispidine, with soluble iodosylbenzene (sPhIO) leads to the extremely reactive ferryl oxidant [(L1)(Cl)FeIV=O]+ with a cis disposition of the chlorido and oxido coligands, as observed in non-heme halogenase enzymes. Experimental data indicate that, with cyclohexane as substrate, there is selective formation of chlorocyclohexane, the halogenation being initiated by C−H abstraction and the result of a rebound of the ensuing radical to an iron-bound Cl. The time-resolved formation of the halogenation product indicates that this primarily results from sPhIO oxidation of an initially formed oxido-bridged diiron(III) resting state. The high yield of up to >70 % (stoichiometric reaction) as well as the differing reactivities of free Fe2+ and Fe3+ in comparison with [(L1)FeIICl2] indicate a high complex stability of the bispidine-iron complexes. DFT analysis shows that, due to a large driving force and small triplet-quintet gap, [(L1)(Cl)FeIV=O]+ is the most reactive small-molecule halogenase model, that the FeIII/radical rebound intermediate has a relatively long lifetime (as supported by experimentally observed cage escape), and that this intermediate has, as observed experimentally, a lower energy barrier to the halogenation than the hydroxylation product; this is shown to primarily be due to steric effects.  相似文献   

9.
Iron(II), (Fe(H2O)62+, (FeII) participates in many reactions of natural and biological importance. It is critically important to understand the rates and the mechanism of FeII oxidation by dissolved molecular oxygen, O2, under environmental conditions containing bicarbonate (HCO3), which exists up to millimolar concentrations. In the absence and presence of HCO3, the formation of reactive oxygen species (O2, H2O2, and HO⋅) in FeII oxidation by O2 has been suggested. In contrast, our study demonstrates for the first time the rapid generation of carbonate radical anions (CO3) in the oxidation of FeII by O2 in the presence of bicarbonate, HCO3. The rate of the formation of CO3 may be expressed as d[CO3]/dt=[FeII[[O2][HCO3]2. The formation of reactive species was investigated using 1H nuclear magnetic resonance (1H NMR) and gas chromatographic techniques. The study presented herein provides new insights into the reaction mechanism of FeII oxidation by O2 in the presence of bicarbonate and highlights the importance of considering the formation of CO3 in the geochemical cycling of iron and carbon.  相似文献   

10.
Ate-iron(II) species such as [Ar3FeII] (Ar=aryl) are key intermediates in Fe-catalyzed couplings between aryl nucleophiles and organic electrophiles. They can be active species in the catalytic cycle, or lead to Fe0 and FeI oxidation states, which can themselves be catalytically active or lead to unwished organic byproducts. Analysis of the reactivity of the intermediates obtained by step-by-step displacement of the mesityl groups in high-spin [Mes3FeII] by less hindered phenyl ligands was performed, and uncovered the crucial role of both steric and electronic parameters in the formation of the Fe0 and FeI oxidation states. The formation of quaternized [Ar4FeIIMgBr(THF)] intermediates allows the bielectronic reductive elimination energy required for the formation of Fe0 to be reduced. Similarly, the small steric pressure of the aryl groups in [Ar3FeII] enables the formation of aryl-bridged [{FeII(Ar)2}2(μ-Ar)2]2− species, which afford the FeI oxidation state by bimetallic reductive elimination. These results are supported by 1H NMR, EPR, and 57Fe Mössbauer spectroscopies, as well as by DFT calculations.  相似文献   

11.
The catalytic reactivity of the high‐spin MnII pyridinophane complexes [(Py2NR2)Mn(H2O)2]2+ (R=H, Me, tBu) toward O2 formation is reported. With small macrocycle N‐substituents (R=H, Me), the complexes catalytically disproportionate H2O2 in aqueous solution; with a bulky substituent (R=tBu), this catalytic reaction is shut down, but the complex becomes active for aqueous electrocatalytic H2O oxidation. Control experiments are in support of a homogeneous molecular catalyst and preliminary mechanistic studies suggest that the catalyst is mononuclear. This ligand‐controlled switch in catalytic reactivity has implications for the design of new manganese‐based water oxidation catalysts.  相似文献   

12.
The activation of O2 is a key step in selective catalytic aerobic oxidation reactions mediated by transition metals. The bridging trinuclear palladium species, [(LPdII)33‐O)2]2+ (L=2,9‐dimethylphenanthroline), was identified during the [LPd(OAc)]2(OTf)2‐catalyzed aerobic oxidation of 1,2‐propanediol. Independent synthesis, structural characterization, and catalytic studies of the trinuclear compound show that it is a product of oxygen activation by reduced palladium species and is a competent intermediate in the catalytic aerobic oxidation of alcohols. The formation and catalytic activity of the trinuclear Pd3O2 species illuminates a multinuclear pathway for aerobic oxidation reactions catalyzed by Pd complexes.  相似文献   

13.
Shen  Zhen  Zuo  Jing-Lin  Shi  Fa-Nian  Xu  Yan  Song  You  You  Xiao-Zeng  Raj  S. Shanmuga Sundara  Fun  Hoong-Kun  Zhou  Zhong-Yuan  Che  Chi-Ming 《Transition Metal Chemistry》2001,26(3):345-350
Two bimetallic assemblies, K2[NiII(cyclam)]3[FeII(CN)6]2 · 12H2O (1) and [NiII(cyclam)]3[FeIII(CN)6]2 · 16H2O (2) (cyclam = 1,4,8,11-tetraazacyclotetradecane), were obtained by reaction of K4[Fe(CN)6] and [Ni(cyclam)](ClO4)2 in aqueous media at different temperatures. Their crystals were structurally determined and magnetic properties were studied. Both of the compounds have honeycomb-layered structures, which are formed by Fe6Ni6 units linked through the cyanide bridges. Structure (1) consists of polyanions containing NiII–NC–FeII linkages and K+ cations, while structure (2) is a two-dimensional neutral layer containing NiII–NC–FeIII linkages. The magnetic properties of (1) and (2) have been investigated in the 5–300 K range. Compound (1) exhibits a weak antiferromagnetic interaction with Weiss constant = –0.35 K; compound (2) shows ferromagnetic intralayer and antiferromagnetic interlayer interactions.  相似文献   

14.
Non‐heme (L)FeIII and (L)FeIII‐O‐FeIII(L) complexes (L=1,1‐di(pyridin‐2‐yl)‐N,N‐bis(pyridin‐2‐ylmethyl)ethan‐1‐amine) underwent reduction under irradiation to the FeII state with concomitant oxidation of methanol to methanal, without the need for a secondary photosensitizer. Spectroscopic and DFT studies support a mechanism in which irradiation results in charge‐transfer excitation of a FeIII?μ‐O?FeIII complex to generate [(L)FeIV=O]2+ (observed transiently during irradiation in acetonitrile), and an equivalent of (L)FeII. Under aerobic conditions, irradiation accelerates reoxidation from the FeII to the FeIII state with O2, thus closing the cycle of methanol oxidation to methanal.  相似文献   

15.
Redox‐inactive metal ions are one of the most important co‐factors involved in dioxygen activation and formation reactions by metalloenzymes. In this study, we have shown that the logarithm of the rate constants of electron‐transfer and C−H bond activation reactions by nonheme iron(III)–peroxo complexes binding redox‐inactive metal ions, [(TMC)FeIII(O2)]+‐Mn + (Mn +=Sc3+, Y3+, Lu3+, and La3+), increases linearly with the increase of the Lewis acidity of the redox‐inactive metal ions (ΔE ), which is determined from the gzz values of EPR spectra of O2.−‐Mn + complexes. In contrast, the logarithm of the rate constants of the [(TMC)FeIII(O2)]+‐Mn + complexes in nucleophilic reactions with aldehydes decreases linearly as the ΔE value increases. Thus, the Lewis acidity of the redox‐inactive metal ions bound to the mononuclear nonheme iron(III)–peroxo complex modulates the reactivity of the [(TMC)FeIII(O2)]+‐Mn + complexes in electron‐transfer, electrophilic, and nucleophilic reactions.  相似文献   

16.
With μ-oxo dimeric iron(III) porphyrins [(FeIIITPP)2O] as catalyst, isobutylaldehyde as co-reductant, and dioxygen as oxidant, an efficient model system for epoxidation of olefins has been developed. Compared with mono-metalloporphyrins as catalyst, a remarkable enhancement of reactivity was obtained for the present olefin epoxidation system, in which the turnover number (TON) of the catalyst has doubled from about 700 million to 1400 million. Moreover, a plausible mechanism involving both binuclear and mononuclear intermediate has been proposed.  相似文献   

17.
Reported here is the N2 cleavage of a one‐electron oxidation reaction using trans‐[Mo(depe)2(N2)2] ( 1 ) (depe=Et2PCH2CH2PEt2), which is a classical molybdenum(0)‐dinitrogen complex supported by two bidentate phosphine ligands. The molybdenum(IV) terminal nitride complex [Mo(depe)2N][BArf4] ( 2 ) (BArf4=B(3,5‐(CF3)2C6H3)4) is synthesized by the one‐electron oxidation of 1 upon addition of a mild oxidant, [Cp2Fe][BArf4] (Cp=C5H5), and proceeds by N2 cleavage from a MoII‐N=N‐MoII structure. In addition, the electrochemical oxidation reaction for 1 also cleaved the N2 ligand to give 2 . The dimeric Mo complex with a bridging N2 is detected by in situ resonance Raman and in situ UV‐vis spectroscopies during the electrochemical oxidation reaction for 1 . Density‐functional theory (DFT) calculations reveal that the unstable monomeric oxidized MoI species is converted into 2 via the dimeric structure involving a zigzag transition state.  相似文献   

18.
The global demand for energy and the concerns over climate issues renders the development of alternative renewable energy sources such as hydrogen (H2) important. A high-spin (hs) FeII complex with o-phenylenediamine (opda) ligands, [FeII(opda)3]2+ (hs- [6R] 2+), was reported showing photochemical H2 evolution. In addition, a low-spin (ls) [FeII(bqdi)3]2+ (bqdi: o-benzoquinodiimine) (ls- [0R] 2+) formation by O2 oxidation of hs- [6R] 2+, accompanied by ligand-based six-proton and six-electron transfer, revealed the potential of the complex with redox-active ligands as a novel multiple-proton and -electron storage material, albeit that the mechanism has not yet been understood. This paper reports that the oxidized ls- [0R] [PF6]2 can be reduced by hydrazine giving ls-[FeII(opda)(bqdi)2][PF6]2 (ls- [2R] [PF6]2) and ls-[FeII(opda)2(bqdi)][PF6]2 (ls- [4R] [PF6]2) with localized ligand-based proton-coupled mixed-valence (LPMV) states. The first isolation and characterization of the key intermediates with LPMV states offer unprecedented molecular insights into the design of photoresponsive molecule-based hydrogen-storage materials.  相似文献   

19.
Cryogenically trapped FeV nitride complexes with cyclam‐based ligands were found to decay by bimolecular reactions, forming exclusively FeII compounds. Characterization of educts and products by Mössbauer spectroscopy, mass spectrometry, and spectroscopy‐oriented DFT calculations showed that the reaction mechanism is reductive nitride coupling and release of dinitrogen (2 FeV?N→FeII‐N?N‐FeII→2 FeII+N2). The reaction pathways, representing an “inverse” of the Haber–Bosch reaction, were computationally explored in detail, also to judge the feasibility of yielding catalytically competent FeV(N). Implications for the photolytic cleavage of FeIII azides used to generate high‐valent Fe nitrides are discussed.  相似文献   

20.
We describe the synthetically useful enantioselective addition of Br−CX3 (X=Cl or Br) to terminal olefins to introduce a trihalomethyl group and generate optically active secondary bromides. Computational and experimental evidence supports an asymmetric atom‐transfer radical addition (ATRA) mechanism in which the stereodetermining step involves outer‐sphere bromine abstraction from a [(bisphosphine)RhIIBrCl] complex by a benzylic radical intermediate. This mechanism appears unprecedented in asymmetric catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号