首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Palladium dimers with sterically hindered phosphines have been shown to be excellent pre-catalysts for the aminocarbonylation of aryl halides to yield amides and one of them has been successfully employed as a pre-catalyst for the synthesis of (11)C-radiolabelled amides for PET imaging.  相似文献   

2.
A novel and efficient palladium‐catalyzed aminocarbonylation of aryl iodides with amides and N‐alkyl anilines has been developed. The reaction tolerates a wide range of functional groups and is a reliable method for the rapid synthesis of a variety of valuable imides and tertiary benzanilides under an atmospheric pressure of CO.  相似文献   

3.
The first nickel‐catalyzed N‐arylation of amides with (hetero)aryl (pseudo)halides is reported, enabled by use of the air‐stable pre‐catalyst (PAd‐DalPhos)Ni(o‐tolyl)Cl ( C1 ). A range of structurally diverse primary amides and lactams were cross‐coupled successfully with activated (hetero)aryl chloride, bromide, triflate, tosylate, mesylate, and sulfamate electrophiles.  相似文献   

4.
A novel method for the preparation of amides and phthalimides has been developed. The process involves a palladium catalyzed aminocarbonylation of an aryl halide, using a carbodiimide and formic acid as the carbonyl source. Experimental data suggest that the mechanistic pathway for this process involves in‐situ generation of carbon monoxide from the reaction of formic acid with a carbodiimide in the presence of a palladium catalyst. The method can be used to produce a variety of amides and N‐substituted phthalimides efficiently.  相似文献   

5.
Metal‐catalyzed aminocarbonylation is a standard approach for installing amide functionality in chemical synthesis. Despite broad application of this transformation using aryl or vinyl electrophiles, there are few examples involving unactivated aliphatic substrates. Furthermore, there are no stereocontrolled aminocarbonylations of alkyl electrophiles known. Herein, we report a stereospecific aminocarbonylation of unactivated alkyl tosylates for the synthesis of enantioenriched amides. This cobalt‐catalyzed transformation uses a remarkably broad range of amines and proceeds with excellent stereospecificity and chemoselectivity.  相似文献   

6.
Considering the ubiquity of organophosphorus compounds in organic synthesis, pharmaceutical discovery agrochemical crop protection and materials chemistry, new methods for their construction hold particular significance. A conventional method for the synthesis of C−P bonds involves cross‐coupling of aryl halides and dialkyl phosphites (the Hirao reaction). We report a catalytic deamidative phosphorylation of a wide range of amides using a palladium or nickel catalyst giving aryl phosphonates in good to excellent yields. The present method tolerates a wide range of functional groups. The reaction constitutes the first example of a transition‐metal‐catalyzed generation of C−P bonds from amides. This redox‐neutral protocol can be combined with site‐selective conventional cross‐coupling for the regioselective synthesis of potential pharmacophores. Mechanistic studies suggest an oxidative addition/transmetallation pathway. In light of the importance of amides and phosphonates as synthetic intermediates, we envision that this Pd and Ni‐catalyzed C−P bond forming method will find broad application.  相似文献   

7.
A simple formylation reaction of aryl halides, aryl triflates, and vinyl bromides under synergistic nickel‐ and organic‐dye‐mediated photoredox catalysis is reported. Distinct from widely used palladium‐catalyzed formylation processes, this reaction proceeds by a two‐step mechanistic sequence involving initial in situ generation of the diethoxymethyl radical from diethoxyacetic acid by a 4CzIPN‐mediated photoredox reaction. The formyl‐radical equivalent then undergoes nickel‐catalyzed substitution reactions with aryl halides and triflates and vinyl bromides to form the corresponding aldehyde products. Significantly, besides aryl bromides, less reactive aryl chlorides and triflates and vinyl halides serve as effective substrates for this process. Since the mild conditions involved in this reaction tolerate a plethora of functional groups, the process can be applied to the efficient preparation of diverse aromatic aldehydes.  相似文献   

8.
The catalytic aminocarbonylation of (hetero)aryl halides is widely applied in the synthesis of amides but relies heavily on the use of precious metal catalysis. Herein, we report an aminocarbonylation of (hetero)aryl halides using a simple cobalt catalyst under visible light irradiation. The reaction extends to the use of (hetero)aryl chlorides and is successful with a broad range of amine nucleophiles. Mechanistic investigations are consistent with a reaction proceeding via intermolecular charge transfer involving a donor–acceptor complex of the substrate and cobaltate catalyst.

An aminocarbonylation of (hetero)aryl halides using a simple cobalt catalyst under visible light irradiation is presented.  相似文献   

9.
A combinatorial nickel‐catalyzed monofluoroalkylation of aryl halides with unactivated fluoroalkyl halides by reductive cross‐coupling has been developed. This method demonstrated high efficiency, mild conditions, and excellent functional‐group tolerance, thus enabling the late‐stage monofluoroalkylation of diverse drugs. The key to success was the combination of diverse readily available bidentate and monodentate pyridine‐type nitrogen ligands with nickel, which in situ generated a variety of readily tunable catalysts to promote fluoroalkylation with broad scope with respect to both coupling partners. This combinatorial catalysis strategy offers a solution for nickel‐catalyzed reductive cross‐coupling reactions and provides an efficient way to synthesize fluoroalkylated druglike molecules for drug discovery.  相似文献   

10.
A general and efficient Cu(II)‐catalyzed cross‐coupling method is reported for the preparation of acyclic tertiary amides. Generally moderate to excellent yields and functional group tolerance were obtained with secondary acyclic amides and aryl halides as substrates in toluene.  相似文献   

11.
Carboxylic acid derivatives containing acyl halides, anhydrides, esters, amides and acyl nitriles are highly appealing electrophiles in transition‐metal‐catalyzed carbon‐carbon bond‐forming reactions due to their ready availability and low cost, which can provide divergent transformations of carboxylic acids into other value‐added products. In this Minireview, we focus on the recent advances of decarbonylative transformations of carboxylic acid derivatives in carbon‐carbon bond formations using Ni or Pd catalysts. A series of reaction types, product classifications and reaction pathways are presented herein, which show the advantageous features of carboxylic acid derivatives as alternative to aryl or alkyl halides in terms of reactivity and compatibility. The well‐accepted mechanism of nickel‐ or palladium‐catalyzed decarbonylative transformations involves initial oxidative addition of carboxylic acid derivatives, followed by decarbonylation or transmetalation (or insertion), and reductive elimination to generate the products, thereby regenerating the catalysts.  相似文献   

12.
An efficient nickel‐catalyzed decarbonylative amination reaction of aryl and heteroaryl esters has been achieved for the first time. The new amination protocol allows the direct interconversion of esters and amides into the corresponding amines and represents a good alternative to classical rearrangements as well as cross coupling reactions.  相似文献   

13.
The transition‐metal‐catalyzed amination of aryl halides has been the most powerful method for the formation of aryl amines over the past decades. Phenols are regarded as ideal alternatives to aryl halides as coupling partners in cross‐couplings. An efficient palladium‐catalyzed formal cross‐coupling of phenols with various amines and anilines has now been developed. A variety of substituted phenols were compatible with the standard reaction conditions. Secondary and tertiary aryl amines could thus be synthesized in moderate to excellent yields.  相似文献   

14.
This work emphasizes the synthesis of substituted vinyl arenes by reductive coupling of aryl halides with vinyl bromides under mild and easy‐to‐operate nickel‐catalyzed reaction conditions. A broad range of aryl halides, including heteroaromatics, and vinyl bromides were employed to yielding products in moderate to excellent yields with high functional‐group tolerance. The nickel‐catalytic system displays good chemoselectivity between the two C(sp2)‐halide coupling partners, thus demonstrating a mechanistic pathway distinct from other stepwise protocols.  相似文献   

15.
A nickel‐catalyzed reductive arylation of ambiphilic α‐bromoalkyl boronic esters with aryl halides is described. This platform provides an unrecognized opportunity to promote the catalytic umpolung reactivity of ambiphilic reagents with aryl halides, thus unlocking a new cross‐coupling strategy that complements existing methods for the preparation of densely functionalized alkyl‐substituted organometallic reagents from simple and readily accessible precursors.  相似文献   

16.
A novel, mild and facile preparation of alkyl amides from unactivated alkyl iodides employing a fac‐Ir(ppy)3‐catalyzed radical aminocarbonylation protocol has been developed. Using a two‐chambered system, alkyl iodides, fac‐Ir(ppy)3, amines, reductants, and CO gas (released ex situ from Mo(CO)6), were combined and subjected to an initial radical reductive dehalogenation generating alkyl radicals, and a subsequent aminocarbonylation with amines affording a wide range of alkyl amides in moderate to excellent yields.  相似文献   

17.
Polystyrene-supported palladium (Pd@PS) nanoparticles (NPs) have been used to catalyze the aminocarbonylation of aryl halides with amines using oxalic acid as a CO source for the first-time for the synthesis of amides. Furthermore, o-iodoacetophenones participated in amidation and cyclization reactions to give isoindolinones in a single step following a concerted approach. Oxalic acid has been used as a safe, environmentally benign and operationally simple ex situ sustainable CO source under double-layer-vial (DLV) system for different aminocarbonylation reactions. Catalyst stability under a CO environment is a challenging task, however, Pd@PS was found to be recyclable and applicable for a vast substrate scope avoiding regeneration steps. Easy handling of oxalic acid, additive and base-free CO generation, catalyst stability and effortless catalyst separation from the reaction mixture by filtration and introduce of DLV are the added advantages to make the overall process a sustainable approach.  相似文献   

18.
We describe a nickel‐catalyzed cyanation reaction of aryl (pseudo)halides that employs butyronitrile as a cyanating reagent instead of highly toxic cyanide salts. A dual catalytic cycle merging retro‐hydrocyanation and cross‐coupling enables the conversion of a broad array of aryl chlorides and aryl/vinyl triflates into their corresponding nitriles. This new reaction provides a strategically distinct approach to the safe preparation of aryl cyanides, which are essential compounds in agrochemistry and medicinal chemistry.  相似文献   

19.
A palladium‐catalyzed direct C‐arylation reaction of readily available cage carboranyllithium reagents with aryl halides has been developed for the first time. This method is applicable to a wide range of aryl halide substrates including aryl iodides, aryl bromides, and heteroaromatic halides.  相似文献   

20.
The first electrochemical approach for nickel‐catalyzed cross‐electrophile coupling was developed. This method provides a novel route to 1,1‐diarylalkane derivatives from simple and readily available alkyl and aryl halides in good yields and excellent regioselectivity under mild conditions. The procedure shows good tolerance for a broad variety of functional groups and both primary and secondary alkyl halides can be used. Furthermore, the reaction was successfully scaled up to the multigram scale, thus indicating potential for industrial application. Mechanistic investigation suggested the formation of a nickel hydride in the electroreductive chain‐walking arylation, which led to the development of a new nickel‐catalyzed hydroarylation of styrenes to provide a series of 1,1‐diaryl alkanes in good yields under mild reaction conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号