首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present the elegant synthesis and the photophysical and electroluminescent properties of a series of cyclometalated iridium(III) complexes [Ir(PPI)2(pic), PPI: 1,2‐diphenyl‐1H‐phenanthro[9,10‐d]imidazole; pic: picolinic acid]. The Ir(PPI)2(pic) complexes showed characteristic phosphorescence with an emission range of 556–579 nm and a high quantum efficiency with microsecond lifetimes. The strongly allowed phosphorescence in these complexes is the result of significant spin–orbit coupling of the Ir center. All bis(PPI) derivatives exhibit intense triplet metal‐to‐ligand charge transfer (MLCT) photoluminescence in the fluid solutions at room temperature. The impact of different solvents, substituents on the phenanthroimidazole ligands and complex concentrations upon their emissive behavior have been examined and demonstrate that their emission energies can be systematically modified. Weak bands located at longer wavelength have been assigned to the 1MLCT ← S0 and 3MLCT ← S0 transitions of iridium complexes. Application of the 3MLCT excited state of the [Ir(PPI)2(pic)] materials in organic light‐emitting devices are described. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
A new way has been investigated for tuning the optical and electronic performance of cyclometalated iridium(III) phosphors by simple tailoring of the phenyl ring of ppy (Hppy = 2‐phenylpyridine) with various main group moieties in [Ir(ppy‐X)2(acac)] (X = POPh2, SO2Ph, GePh3, OPh, OPh(CF3)3, SOPh). The geometric and electronic structures of the complexes in the ground state are studied with time‐dependent density functional theory (TD‐DFT) and Hartree–Fock method, whereas the lowest singlet and triplet excited states are optimized by the configuration interaction singles method. At the TD‐DFT level, absorptions and phosphorescence properties of the studied molecules were calculated on the basis of the optimized ground‐ and excited‐state geometries, respectively. The various main group moieties produce a remarkable influence on their optoelectronic properties. The calculated data reveal that the studied molecules have improved charge transfer rate and balance and can be used as hole and electron transport materials in organic light‐emitting devices. In particular, the work can provide valuable insight toward future design of new and relatively rare luminescent materials with enhanced electron‐injection and electron‐transporting features. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
在无任何保护性介质存在下,以Na2SO3作化学除氧剂,KI为重原子微扰剂,菲即能产生强而稳定的流体室温磷光发射.激光和发射波长λex/λem为283/482,504nm,不同有机溶剂存在对其磷光发射的性质有不同影响.1%乙腈存在时,菲浓度在8.0×10-7~6.0×10-6mol*L-1和6.0×10-6~4.0×10-5mol*L-1范围内分别与磷光发射强度呈良好的线性关系,检出限为2.6×10-8mol*L-1.  相似文献   

4.
Room‐temperature phosphorescence (RTP) has been exploited for analytical research for over 30 years now due to the widespread recognition of its unique properties as a selective and sensitive technique, complementary to fluorescence. Recent years have seen the awakening of medical, geological, industrial, and technological interest in its application. The trend continues, driven by the achievements that have already been made and the promise of future achievements. This review attempts to cover specifically emerging applications of RTP in areas such as medicine, geological dating, forensics, and technology, illustrating the advantages that can be derived from the use of the technique and stressing its potential for novel applications.  相似文献   

5.
以两种卤代萘为模型化合物,基于磷光寿命的定义τ=τ^-,τ0=1/kp和其与各速率常数的关系,导出了一种类似于Stern-Volmer方程的线性方程:τ0/τ=(kp_kic)/kp=1 kic/kp=1 Ksv.c。通过测定不同重原子微扰剂浓度时的磷光寿命,探讨了从两种途径计算流体室温磷光发射相关动力学参数的可行性和方法,通过这些参数对比讨论了KI和TINO3两种重原子微扰剂对这两种卤代萘无保护流体室温磷光发射的重原子效应的差异。  相似文献   

6.
仔细研究了吲哚-3-丁酸(IBA)的无保护流体室温燐光(NP-RTP)及以高分子分散剂聚乙二醇-200,聚乙二醇-400和非离子表面活性剂Tween-20,Tween-40, Tween-80,Tween-85,Brij35和乳化剂OP为介质的流体室温燐光性质。表面活性剂和高分子分散剂能抑制IBA燐光猝灭,使其具有更低的检出限,同时也使燐光强度-激发光照射时间曲线发生改变,但不影响IBA燐光光谱特性。无论是否存在表面活性剂或高分子分散剂,TlNO3都不能诱导IBA产生燐光,KI却能诱导其产生强烈燐光。用于强化水样和土壤样品中IBA的测定,回收率95.2%~104%,相对标准偏差2.4%~4.0%。  相似文献   

7.
Chiral responses are optical responses involving circular polarizations. Controlling the chiral response in a flexible way is very important in optical manipulations. Chiral metamaterials have thus drawn enormous interest due to their flexible designing feature. However, most of the previous studies are mainly realized by designing the structure of the individual meta‐atom. Meanwhile, to enhance the response, complex design and fabrication processes are typically required. Here, by introducing spin‐dependent propagating surface plasmons and spin‐selective interference, giant spin‐resolved transmission is achieved in a simple meta‐hole structure. In this interaction process, spin‐orbital angular momentum conversion plays an essential role. By controlling the phase difference between the interference components, controllable spin‐resolved transmission is achieved. Furthermore, such method can also be applied to realize spin‐resolved excitation of surface plasmons. The proposed controlling strategy offers a versatile platform for a variety of promising applications, such as polarization control, asymmetric transmission, surface plasmon excitation, and on‐chip chiral manipulation.  相似文献   

8.
The next‐to‐next‐to‐leading order post‐Newtonian spin‐orbit and spin(1)‐spin(2) Hamiltonians for binary compact objects in general relativity are derived. The Arnowitt‐Deser‐Misner canonical formalism and its generalization to spinning compact objects in general relativity are presented and a fully reduced matter‐only Hamiltonian is obtained. Several simplifications using integrations by parts are discussed. Approximate solutions to the constraints and evolution equations of motion are provided. Technical details of the integration procedures are given including an analysis of the short‐range behavior of the integrands around the sources. The Hamiltonian of a test‐spin moving in a stationary Kerr spacetime is obtained by rather simple approach and used to check parts of the mentioned results. Kinematical consistency checks by using the global (post‐Newtonian approximate) Poincaré algebra are applied. Along the way a self‐contained overview for the computation of the 3PN ADM point‐mass Hamiltonian is provided, too.  相似文献   

9.
Organic light‐emitting diodes (OLEDs) are discussed for electro‐optical integrated devices that are used for optical signal transmission. Organic optical devices including polymeric optical fibers are used for optical communication applications to realize polymeric electro‐optical integrated devices. The OLEDs were fabricated by vacuum process, i.e. the organic molecular beam deposition (OMBD) technique or a solution process on a polymeric or a glass substrate, for comparison. Optical signals faster than 100 MHz have been created by applying pulsed voltage directly to the OLED utilizing rubrene doped in 8‐hydoxyquinolinum aluminum (Alq3), as an emissive layer. OLEDs fabricated by solution process utilizing rubrene doped in carrier‐transporting materials have also discussed. OLEDs utilizing polymeric materials by solution process are also fabricated and discussed. Moving‐picture signals are transmitted utilizing both vacuum‐ and solution‐processed OLEDs, respectively.  相似文献   

10.
In this article the effects induced by exposure of sol–gel thin films to hard X‐rays have been studied. Thin films of silica and hybrid organic–inorganic silica have been prepared via dip‐coating and the materials were exposed immediately after preparation to an intense source of light of several keV generated by a synchrotron source. The samples were exposed to increasing doses and the effects of the radiation have been evaluated by Fourier transform infrared spectroscopy, spectroscopic ellipsometry and atomic force microscopy. The X‐ray beam induces a significant densification on the silica films without producing any degradation such as cracks, flaws or delamination at the interface. The densification is accompanied by a decrease in thickness and an increase in refractive index both in the pure silica and in the hybrid films. The effect on the hybrid material is to induce densification through reaction of silanol groups but also removal of the organic groups, which are covalently bonded to silicon via Si—C bonds. At the highest exposure dose the removal of the organic groups is complete and the film becomes pure silica. Hard X‐rays can be used as an efficient and direct writing tool to pattern coating layers of different types of compositions.  相似文献   

11.
Organic single‐crystalline materials have attracted great attention for laser applications. However, the fabrication of laser resonators and pattern of crystals are still intractable problems. Organic single crystals have been limited to fundamental property studies despite their superior photonic characteristics. In this work, whispering‐gallery mode (WGM) resonators of BP1T and BP2T crystalline materials have been fabricated through a combination method with improved lithography and dry etching. Crystalline microresonators with different geometries over a large area are top‐down fabricated with submicrometer spatial resolution. WGM lasing oscillation from circular, hexagonal, pentagonal and square resonators is definitively observed. The BP1T and BP2T crystals are characterized with high refractive index, and stable lasing in aqueous solution is demonstrated besides in the air environment. It is expected that organic crystalline materials would be used for the practical applications in a variety of organic electronic and optical devices.  相似文献   

12.
有机电致发光白光器件的研究进展   总被引:11,自引:7,他引:4  
雷钢铁  段炼  王立铎  邱勇 《发光学报》2004,25(3):221-230
在十多年的时间里,有机电致发光二极管(Organic Lightemitting Diodes,OLEDs)的研究和应用取得了长足的进展。有机电致发光器件具有许多优点,例如:自发光、视角宽、响应快、发光效率高、温度适应性好、生产工艺简单、驱动电压低、能耗低、成本低等,因此有机电致发光器件极有可能成为下一代的平板显示终端。有机电致发光白光器件因为可以用于全彩色显示和照明,已成为OLED研究中的热点。介绍了有机电致发光白光器件的研究进展,按发光的性质将白光器件分为荧光器件和磷光器件两类,按发光层数将白光器件分为单层和多层器件,对相关材料、器件结构、发光机理等方面进行了讨论。  相似文献   

13.
We study a spin structure that arises in a one‐dimensional quantum dot with zero total spin under the action of a charged tip of a scanning probe microscope in the presence of a weak magnetic field. The evolution of spin structure with changing the probe position is traced to show that the movable probe can be an effective tool to manipulate the spin. The spin structures are formed when the probe is located in certain regions along the dot due to Coulomb interaction of electrons as they are redistributed between the two sections in which the quantum dot is divided by the potential barrier created by the probe. There are two main states: spin‐polarized and non‐polarized ones. The transition between them is accompanied by a spin precession governed by the Rashba spin–orbit interaction induced by the electric field of the probe. In the transition region the spin density changes strongly while charge distribution remains nearly unchanged. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

14.
Low‐field magnetoresistance is an effective and energy‐saving way to use half‐metallic materials in magnetic reading heads and magnetic random access memory. Common spin‐polarized materials with low field magnetoresistance effect are perovskite‐type manganese, cobalt, and molybdenum oxides. In this study, we report a new type of spinel cobaltite materials, self‐assembled nanocrystalline NiCo2O4, which shows large low field magnetoresistance as large as –19.1% at 0.5 T and –50% at 9 T (2 K). The large low field magnetoresistance is attributed to the fast magnetization rotation of the core nanocrystals. The surface spin‐glass is responsible for the observed weak saturation of magnetoresistance under high fields. Our calculation demonstrates that the half‐metallicity of NiCo2O4 comes from the hopping eg electrons within the tetrahedral Co‐atoms and the octahedral Ni‐atoms. The discovery of large low‐field magnetoresistance in simple spinel oxide NiCo2O4, a non‐perovskite oxide, leads to an extended family of low‐field magnetoresistance materials. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

15.
As part of the efforts for the design of new organic nonlinear optical(NLO) materials with high efficiency for present day technological requirements, a comprehensive investigation on the intramolecular charge transfer(CT) of an efficient π‐conjugated potential push–pull NLO chromophore, ethyl‐3‐(3,4‐dihydroxyphenyl)‐2‐propenoate(EDP) to a strong electron‐acceptor group through the π‐conjugated bridge has been carried out from their vibrational spectra. The first hyperpolarizabilities of caffeic derivatives are investigated by ab initio method. The NLO efficiency is experimentally measured by powder efficiency experiment. The strongest vibrational modes contributing to the electro‐optic effect from the simultaneous infrared(IR) and Raman activities of the ring CC stretching modes, in‐plane deformation modes, and the umbrella mode of the methyl groups have been identified and analyzed unambiguously. The influence of electronic effects, hyperconjugation and backdonation, on the C H stretching vibrations of both methyl and methylene groups causing the decrease of stretching wavenumbers and IR intensities has been extensively investigated. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
黄嘌呤甲基衍生物滤纸基质室温磷光光谱研究   总被引:5,自引:2,他引:3  
以滤纸为基质,详细讨论了3种黄嘌呤甲基衍生物可可碱、咖啡因、茶碱的固体基质温磷光光谱特性,研究表明:它们的滤纸基质室温磷光(PS-RTP)光谱基本相近,其最大激发波长λem分别为435、432、427nm。40余种无机盐类重原子微扰剂对这3种化合物诱发室温磷光的研究结果为:KI、NaI,Zn(NO3)2,SrCl2对可可碱、咖啡因、茶碱发射PS-RTP都有一定的重原子效应,其中I^-对它们诱发PS-RTP重原子效应最大,酸度实验表明,酸度对可可碱的影响在于咖啡因和茶碱,3种化合物在pH-2-8范围内都有PS-RTP,而且在强酸和强碱笥条件下它们的PS-RTP均发生猝灭,此外,本文也对影响PS-RTP的温度、干燥时间等条件进行了考察。  相似文献   

17.
A second-order multivariate calibration approach, based on a combination of PARAFAC with time-resolved room temperature phosphorescence (RTP), has been applied to resolve a binary mixture of Phenanthrene and 1,10-Phenanthroline, as model compounds. The RTP signals were obtained in aqueous β-cyclodextrin solutions, in the presence of several heavy atom containing compounds. No deoxygenation was necessary to obtain the phosphorescence signals, which adds simplicity to the method. The resolution of the model compounds was possible in base to the differences in the delay-time of the RTP signals of the investigated analytes, opening a new approach for second-order data generation and subsequent second order multivariate calibration.  相似文献   

18.
We report a quantum‐chemistry study of electronic structures and spectral properties of a series of Pt(II) complexes containing different substituents (? CH3 ( 1 ), ? OCH3 ( 2 ), ? NO2 ( 3 ), ? CF3 ( 4 ), and ? COOH ( 5 )). 1 and 2 have been previously synthesized in experiment, while 3 – 5 are artificial complexes that we suggest can be used to investigate the electron‐withdrawing effect on charge injection, transport, absorption, and phosphorescence properties. The results reveal that the stronger electron‐donating and ‐withdrawing groups show stronger absorption intensity, while the phosphorescence efficiency is generally higher for complexes containing electron‐donating substituents. 1 and 2 are easier for hole injection, while 3 – 5 are easier for electron injection. The enhanced electron injection abilities of 3 – 5 will confine more excitons in the light‐emitting layer (EML) and may not result in lower electroluminescence (EL) efficiency than 1 and 2 . These results suggest that the three artificial complexes may be new emitters in organic light‐emitting diodes (OLEDs). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
苯并咪唑的三维荧光光谱与三维室温磷光光谱   总被引:4,自引:0,他引:4  
测量了浓度为1×10-4mol/L苯并咪唑水溶液的三维荧光光谱,三维室温磷光光谱和紫外/可见吸收光谱,还测量了苯并咪唑固体紫外/可见吸收光谱对化合物的荧光和室温磷光进行了分析、比较,发现苯并咪唑在290nm、580nm和870nm区域均有强而丰富的荧光谱线,而室温磷光谱线(RTP)单一地出现在290nm区域,且强度很小;同时还讨论了苯并咪唑的升频转换荧光现象.  相似文献   

20.
We present the next‐to‐next‐to‐leading order post‐Newtonian (PN) spin(1)‐spin(2) Hamiltonian for two self‐gravitating spinning compact objects. If both objects are rapidly rotating, then the corresponding interaction is comparable in strength to a 4PN effect. The Hamiltonian is checked via the global Poincaré algebra with the center‐of‐mass vector uniquely determined by an ansatz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号