首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The discovery of new nonlinear optical (NLO) materials for coherent light generation in the deep‐ultraviolet (DUV, wavelength below 200 nm) region is essential for the development of laser technologies. Herein, we report a new material CsB4O6F (CBF), which combines the superior structural properties of two well‐known NLO materials, β‐BaB2O4 (BBO) and KBe2BO3F2 (KBBF). CBF exhibits excellent DUV optical properties including a short cutoff edge (155 nm), a large SHG response (≈1.9×KDP), and a suitable birefringence that enables frequency doubling down to 171.6 nm. Remarkably, CBF melts congruently and shows an improved growth habit. In addition, our rational design strategy will contribute to the discovery of DUV NLO materials.  相似文献   

2.
A new beryllium‐free deep‐ultraviolet (DUV) nonlinear optical (NLO) material, β‐Rb2Al2B2O7 (β‐RABO), has been synthesized and characterized. The chiral nonpolar acentric material shows second‐harmonic generation (SHG) activity at both 1064 and 532 nm with efficiencies of 2×KH2PO4 and 0.4×β‐BaB2O4, respectively, and exhibits a short absorption edge below 200 nm. β‐Rb2Al2B2O7 has a three‐dimensional structure of corner‐shared Al(BO3)3O polyhedra. The discovery of β‐RABO shows that through careful synthesis and characterization, replacement of KBe2BO3F2 (KBBF) by a Be‐free DUV NLO material is possible.  相似文献   

3.
The first fluorosulfonic ultraviolet (UV) nonlinear optical (NLO) material, C(NH2)3SO3F, is rationally designed by taking KBe2BO3F2 (KBBF) as the parent compound. C(NH2)3SO3F features similar topological layers as KBBF by replacing inorganic (BO3)3? with organic C(NH2)3+ trigonal units and BeO3F with SO3F? tetrahedra. Therefore, C(NH2)3SO3F is a metal‐free UV NLO crystal. Benefiting from the coplanar configuration of the C(NH2)3+ cationic groups, it possesses a large SHG response of 5×KDP and moderate birefringence of 0.133@1064 nm. Besides, it has a short UV cutoff edge of 200 nm. The calculated results reveal the shortest SHG phase‐matching wavelengths can reach 200 nm. These findings highlight the exploration of metal‐free compounds as nontoxic and low‐cost UV NLO materials as a new research area.  相似文献   

4.
Borate halides are an ideal materials class from which to design high‐performance nonlinear optical (NLO) materials. Currently, borate fluorides, chlorides, and bromides are extensively investigated while borate iodide materials discovery remains rare because of the perceived synthetic challenges. We report a new borate iodide, Pb2BO3I, synthesized by a straightforward hydrothermal method. The Pb2BO3I chemical formula conceals that the compound exhibits a structure similar to the well‐established KBe2BO3F2 (KBBF), which we show supports the highest second‐harmonic generation (SHG) at 1064 nm in the KBBF family, 10 × KH2PO4 (KDP), arising from the inclusion of Pb2+ and I? and the crystal chemistry. Our work shows that KBBF‐related compounds can be synthesized incorporating iodide and exhibit superior NLO responses.  相似文献   

5.
KBe2BO3F2 (KBBF) is still the only practically usable crystal that can generate deep‐ultraviolet (DUV) coherent light by direct second harmonic generation (SHG). However, applications are hindered by layering, leading to difficulty in the growth of thick crystals and compromised mechanical integrity. Despite efforts, it is still a great challenge to discover new nonlinear optical (NLO) materials that overcome the layering while keeping the DUV SHG available. Now, two new DUV NLO beryllium borates have been successfully designed and synthesized, NH4Be2BO3F2 (ABBF) and γ‐Be2BO3F (γ‐BBF), which not only overcome the layering but also can be used as next‐generation DUV NLO materials with the shortest type I phase‐matching second‐harmonic wavelength down to 173.9 nm and 146 nm, respectively. Significantly, γ‐BBF is superior to KBBF in all metrics and would be the most outstanding DUV NLO crystal.  相似文献   

6.
A meticulously designed, polar, non‐centrosymmetric lead borate chloride, Pb2BO3Cl, was synthesized using KBe2BO3F2 (KBBF) as a model. Single‐crystal X‐ray diffraction revealed that the structure of Pb2BO3Cl consists of cationic [Pb2(BO3)]+ honeycomb layers and Cl? anions. Powder second harmonic generation (SHG) measurements on graded polycrystalline Pb2BO3Cl indicated that the title compound is phase‐matchable (type I) and exhibits a remarkably strong SHG response, which is approximately nine times stronger than that of potassium dihydrogen phosphate, and the largest efficiency observed in materials with structures similar to KBBF. Further characterization suggested that the compound melts congruently at high temperature and has a wide transparency window from the near‐UV to the mid‐IR region.  相似文献   

7.
Two Fluoride Borates of Gadolinium: Gd2F3[BO3] and Gd3F3[BO3]2 By flux‐supported solid‐state reaction of Gd2O3 and GdF3 with B2O3 (flux: CsCl, molar ratio: 1 : 1 : 1 : 6, sealed tantalum capsule, 700 °C, 7 d) the new gadolinium fluoride borate Gd2F3[BO3] (monoclinic, P21/c; a = 1637.2(1), b = 624.78(4), c = 838.04(6) pm, β = 93.341(8)°; Vm = 64.418(6) cm3/mol, Z = 8) was obtained as colourless, prismatic, face‐rich single crystals. The four crystallographically different Gd3+ cations (CN = 9) are all capped square‐antiprismatically surrounded by fluoride and oxide anions, in which the latter represent always components of isolated trigonal planar [BO3]3— anions. The six crystallographically independent F anions all reside in more or less planar coordination of three Gd3+ cations. Thus the constitution of Gd2F3[BO3] can be described as a sequence of alternating layers each of the composition Gd[BO3] and GdF3 parallel (100), respectively. The crystal structures of Gd2F3[BO3] and the shortly published Gd3F3[BO3]2 (monoclinic, C2/c; a = 1253.4(1), b = 623.7(1), c = 836.0(1) pm, β = 97.404(6)°; Vm = 97.571(9) cm3/mol, Z = 4) are compared with each other. Due to the structural analogies between these two gadolinium fluoride borates, a disorder model of the boron atoms frequently found for Gd2F3[BO3] is able to be transferred to Gd3F3[BO3]2 as well.  相似文献   

8.
Designing deep-ultraviolet (DUV) nonlinear-optical (NLO) crystals is one of the major current research interests, but it faces a great challenge. In order to overcome the problem of crystal growth and the toxicity of BeO raw materials in KBe2BO3F2 (KBBF), the only applicable DUV NLO crystal so far, we substitute Be2+ cations with Zn2+ in the KBBF structure and modify the halogen anions, by which three new Zn-containing KBBF-like compounds, CsZn2BO3X2 (X2=F2, Cl2, and FCl), have been successfully synthesized. They all exhibit excellent NLO properties, including improved SHG responses (2.8–3.5×KDP) and short UV cut-off edges (<190 nm). In comparison with KBBF, CsZn2BO3X2 (X2=F2, Cl2, and FCl) are all chemically benign and have better growth habits, so they are all promising as DUV NLO crystals. Further study on structure–property relationships indicates that the mixing of halogen anions is a feasible strategy to enhance the SHG responses of the KBBF family.  相似文献   

9.
《Solid State Sciences》2007,9(8):713-717
The new nonlinear optical crystals BiAlGa2(BO3)4 have been grown by spontaneous crystallization with molten flux based on a Bi2O3–B2O3 solvent. From single crystal X-ray diffraction measurement, BiAlGa2(BO3)4 has been found to crystallize in the trigonal huntite structure type, space group R32, with cell dimensions a = 9.4433(9) and c = 7.4130(10) Å. The diffuse reflectance spectrum on a powder sample indicated that the short-wavelength absorption edge of BiAlGa2(BO3)4 extends to approximately 271 nm. Second-harmonic generation (SHG) on powder samples has been measured using Kurtz and Perry technique, which indicated that BiAlGa2(BO3)4 is a phase-matchable material, and its SHG coefficient is measured to be four times as large as that of KDP.  相似文献   

10.
《Chemical physics letters》2003,367(5-6):523-527
Electronic structure calculations of KBe2BO3F2 crystal from first principles have been performed based on a plane-wave pseudopotential method for the first time. Its optical linear and second harmonic generation (SHG) coefficients are also calculated. The SHG coefficient measured early was much higher than that of our calculation, however, recent experiment confirms our calculated results. Moreover, a real-space atom-cutting method is adopted to analyze the respective contributions of the cation and anionic group to optical response. The results show that the contributions to the SHG coefficients from the (BO3)3− and (BeFO3)5− groups are dominant and comparable.  相似文献   

11.
Single crystals of BaHf(BO3)2 are grown on a Pt wire from BaHfO3 (3.5 mol%) solved in a BaB4O7 melt (1050 °C soaking temperature, 1000-940 °C crystallization temperature gradient).  相似文献   

12.
The magnesium borate fluoride Mg5(BO3)3F was grown by spontaneous crystallization with molten flux based on the MgF2‐LiF‐Na2CO3‐H3BO3 solvent. Structure solution from single‐crystal X‐ray diffraction shows that the title compound crystallizes in the orthorhombic space group Pnma (No. 62) with cell dimensions of a = 10.068(5) Å, b = 14.858(7) Å, c = 4.540(2) Å and Z = 4. Its structure features a three‐dimensional (3D) Mg‐O‐F framework composed of MgO5F and MgO6 polyhedra and isolated BO3 groups. The detailed structure comparison referred to Mg5(BO3)3F, Mg3BO3F3 and β‐Mg2BO3F was carried out. The infrared spectrum (IR) and the bond valence sum (BVS) calculations of Mg5(BO3)3F verify the validity of the structure. The calculated band structure and the density of states of Mg5(BO3)3F suggest that its indirect bandgap is 5.27 eV. The compound was additionally investigated by UV/Vis‐NIR diffuse reflectance spectroscopy and thermal analysis.  相似文献   

13.
Fluorooxoborates, benefiting from the large optical band gap, high anisotropy, and ever‐greater possibility to form non‐centrosymmetric structures activated by the large polarization of [BOxF4?x](x+1)? building blocks, have been considered as the new fertile fields for searching the ultraviolet (UV) and deep‐UV nonlinear optical (NLO) materials. Herein, we report the first asymmetric alkaline‐earth metal fluorooxoborate SrB5O7F3, which is rationally designed by taking the classic Sr2Be2B2O7 (SBBO) as a maternal structure. Its [B5O9F3]6? fundamental building block with near‐planar configuration composed by two edge‐sharing [B3O6F2]5? rings in SrB5O7F3 has not been reported in any other borates. Solid state 19F and 11B magic‐angle spinning NMR spectroscopy verifies the presence of covalent B?F bonds in SrB5O7F3. Property characterizations reveal that SrB5O7F3 possesses the optical properties required for deep‐UV NLO applications, which make SrB5O7F3 a promising crystal that could produce deep‐UV coherent light by the direct SHG process.  相似文献   

14.
Deep‐ultraviolet nonlinear optical (DUV NLO) crystals are the key materials to extend the output range of solid‐state lasers to below 200 nm. The only practical material KBe2BO3F2 suffers high toxicity through beryllium and strong layered growth. Herein, we propose a beryllium‐free material design and synthesis strategy for DUV NLO materials. Introducing the (BO3F)4−, (BO2F2)3−, and (BOF3)2− groups in borates could break through the fixed 3D B–O network that would produce a larger birefringence without layering and simultaneously keep a short cutoff edge down to DUV. The theoretical and experimental studies on a series of fluorooxoborates confirm this strategy. Li2B6O9F2 is identified as a DUV NLO material with a large second harmonic generation efficiency (0.9×KDP) and a large predicted birefringence (0.07) without layering. This study provides a feasible way to break down the DUV wall for NLO materials.  相似文献   

15.
The first fluorosulfonic ultraviolet (UV) nonlinear optical (NLO) material, C(NH2)3SO3F, is rationally designed by taking KBe2BO3F2 (KBBF) as the parent compound. C(NH2)3SO3F features similar topological layers as KBBF by replacing inorganic (BO3)3− with organic C(NH2)3+ trigonal units and BeO3F with SO3F tetrahedra. Therefore, C(NH2)3SO3F is a metal-free UV NLO crystal. Benefiting from the coplanar configuration of the C(NH2)3+ cationic groups, it possesses a large SHG response of 5×KDP and moderate birefringence of 0.133@1064 nm. Besides, it has a short UV cutoff edge of 200 nm. The calculated results reveal the shortest SHG phase-matching wavelengths can reach 200 nm. These findings highlight the exploration of metal-free compounds as nontoxic and low-cost UV NLO materials as a new research area.  相似文献   

16.
An ammonium‐containing metal iodate fluoride compound, (NH4)Bi2(IO3)2F5, featuring a two‐dimensional double‐layered framework constructed by [BiO2F5]6? and [BiO4F4]9? polyhedra, as well as [IO3]? groups, was successfully synthesized. The well‐ordered alignment of these SHG‐active units leads to an extraordinary strong SHG response of 9.2 times that of KDP. Moreover, this compound possesses a large birefringence (Δn=0.0690 at 589.3 nm), a wide energy band gap (Eg=3.88 eV), and a high laser damage threshold (LDT; 40.2×AgGaS2). In particular, thermochromic behavior was observed for the first time in this type of compound. Such multifunctional crystals will expand the application of nonlinear optical materials.  相似文献   

17.
A layered fluorooxoborate, KNiB4O6F3, contains a new (B4O6F4)4− group built of one planar (BO3)3− triangle and three tetrahedral (BO3F)4− units. Those units are joined together by sharing the oxygen atoms to form a 2-dimensinal (BO3/2F)3BO3/2) layer. K+ and Ni2+ occupy on the sides with F and O2− of the (BO3/2F)3BO3/2) layer with a high (positive charge) to high (negative charge) and low to low coordination. Such kind of charge-oriented ordering is found to be governed by the stabilization energy of Coulomb interaction of the cations in certain sites. It is hoped that this mechanism of ordering may provide an additional tool for designing new structures with favourable properties, such as ferroelectrics or nonlinear optical materials.  相似文献   

18.
Er5(BO3)2F9 was synthesised under conditions of 3 GPa and 800 °C in a Walker‐type multianvil apparatus. The crystal structure was determined on the basis of single‐crystal X‐ray diffraction data, collected at room temperature. Er5(BO3)2F9 is isotypic to the recently synthesised Yb5(BO3)2F9 and crystallises in C2/c with the lattice parameters a = 2031.2(4) pm, b = 609.5(2) pm, c = 824.6(2) pm, and β = 100.29(3)°. The physical properties of RE5(BO3)2F9 (RE = Er, Yb) including high temperature behaviour and single crystal IR‐ / Raman spectroscopy were investigated.  相似文献   

19.
A new SHG material, namely, Pb2(BO3)(NO3), which contains parallel π‐conjugated nitrate and borate anions, was obtained through a facile hydrothermal reaction by using Pb(NO3)2 and Mg(BO2)2?H2O as starting materials. Its structure contains honeycomb [Pb2(BO3)] layers with noncoordination [NO3]? anions located at the interlayer space. Pb2(BO3)(NO3) shows a remarkable strong SHG response of approximately 9.0 times that of potassium dihydrogen phosphate (KDP) and the material is also phase‐matchable. The large SHG coefficient of Pb2(BO3)(NO3) arises from the synergistic effect of the stereoactive lone pairs on Pb2+ cations and parallel alignment of π‐conjugated BO3 and NO3 units. Based on its unique properties, Pb2(BO3)(NO3) may have great potential as a high performance NLO material in photonic applications.  相似文献   

20.
Trirubidium diyttrium triborate contains zigzag chains of corner‐sharing [Y2O10] dimers. The chains are reinforced by one independent BO3 group and crosslinked by the other two types of BO3 groups to form a three‐dimensional framework. Channels along the [100] direction accommodate the Rb+ cations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号