首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A highly effective hydroxylation reaction of aryl halides with water under synergistic organophotoredox and nickel catalysis is reported. The OH group of the resulting phenols originates from water, following deprotonation facilitated by an intramolecular base group on the ligand. Significantly, aryl bromides as well as less reactive aryl chlorides served as effective substrates to afford phenols with a wide range of functional groups. Without the need for a strong inorganic base or an expensive noble‐metal catalyst, this process can be applied to the efficient preparation of diverse phenols and enables the hydroxylation of multifunctional pharmaceutically relevant aryl halides.  相似文献   

2.
A simple formylation reaction of aryl halides, aryl triflates, and vinyl bromides under synergistic nickel‐ and organic‐dye‐mediated photoredox catalysis is reported. Distinct from widely used palladium‐catalyzed formylation processes, this reaction proceeds by a two‐step mechanistic sequence involving initial in situ generation of the diethoxymethyl radical from diethoxyacetic acid by a 4CzIPN‐mediated photoredox reaction. The formyl‐radical equivalent then undergoes nickel‐catalyzed substitution reactions with aryl halides and triflates and vinyl bromides to form the corresponding aldehyde products. Significantly, besides aryl bromides, less reactive aryl chlorides and triflates and vinyl halides serve as effective substrates for this process. Since the mild conditions involved in this reaction tolerate a plethora of functional groups, the process can be applied to the efficient preparation of diverse aromatic aldehydes.  相似文献   

3.
The formation of aryl C−S bonds is an important chemical transformation because aryl sulfides are valuable building blocks for the synthesis of biologically and pharmaceutically active molecules and organic materials. Aryl sulfides have traditionally been synthesized through the transition‐metal‐catalyzed cross‐coupling of aryl halides with thiols. However, the aryl halides used are usually bromides and iodides; readily available, low‐cost aryl chlorides often not reactive enough. Furthermore, the deactivation of transition‐metal catalysts by thiols has forced chemists to use high catalyst loadings, specially designed ligands, high temperatures, and/or strong bases, thus leading to high costs and the incompatibility of some functional groups. Herein, we describe a simple and efficient visible‐light photoredox arylation of thiols with aryl halides at room temperature. More importantly, various aryl chlorides are also effective arylation reagents under the present conditions.  相似文献   

4.
Reported here is the Pd‐catalyzed C–N coupling of hydrazine with (hetero)aryl chlorides and bromides to form aryl hydrazines with catalyst loadings as low as 100 ppm of Pd and KOH as base. Mechanistic studies revealed two catalyst resting states: an arylpalladium(II) hydroxide and arylpalladium(II) chloride. These compounds are present in two interconnected catalytic cycles and react with hydrazine and base or hydrazine alone to give the product. The selectivity of the hydroxide complex with hydrazine to form aryl over diaryl hydrazine was lower than that of the chloride complex, as well as the catalytic reaction. In contrast, the selectivity of the chloride complex closely matched that of the catalytic reaction, indicating that the aryl hydrazine is derived from this complex. Kinetic studies showed that the coupling process occurs by rate‐limiting deprotonation of a hydrazine‐bound arylpalladium(II) chloride complex to give an arylpalladium(II) hydrazido complex.  相似文献   

5.
A simple and efficient C? N cross‐coupling method of aryl halides with various heterocycles was reported, by using 10 mol% of CuI as catalyst and 1.2 equiv. NaH as base. Aryl iodides, aryl bromides and many substituted aryl chlorides could efficiently react with heterocycles, providing variety of N‐arylated products in good to excellent yields. The ligand‐free catalyst system was stable in air and could be readily reused.  相似文献   

6.
An efficient photoredox/nickel catalyzed sulfonylation reaction of aryl, heteroaryl, and vinyl halides has been achieved for the first time. This newly developed sulfonylation protocol provides a versatile method for the synthesis of diverse aromatic sulfones at room temperature and shows excellent functional group tolerance. The electrophilic coupling partners are not limited to aryl, heteroaryl, and vinyl bromides and iodides, but also includes less reactive aryl chlorides as suitable substrates for this transformation.  相似文献   

7.
An efficient photoredox/nickel catalyzed sulfonylation reaction of aryl, heteroaryl, and vinyl halides has been achieved for the first time. This newly developed sulfonylation protocol provides a versatile method for the synthesis of diverse aromatic sulfones at room temperature and shows excellent functional group tolerance. The electrophilic coupling partners are not limited to aryl, heteroaryl, and vinyl bromides and iodides, but also includes less reactive aryl chlorides as suitable substrates for this transformation.  相似文献   

8.
A catalyst- and metal-free electrochemical hydrodehalogenation of aryl halides is disclosed. Our reaction by a flexible protocol is operated in an undivided cell equipped with an inexpensive graphite rod anode and cathode. Trialkylamines nBu3N/Et3N behave as effective reductants and hydrogen atom donors for this electrochemical reductive reaction. Various aryl and heteroaryl bromides worked effectively. The typically less reactive aryl chlorides and fluorides can also be smoothly converted. The utility of our method is demonstrated by detoxification of harmful pesticides and hydrodebromination of a dibrominated biphenyl (analogues of flame-retardants) in gram scale.  相似文献   

9.
Direct fluorination of tertiary alkyl bromides and iodides with Selectfluor is described. The halogen‐exchange fluorination proceeds efficiently in acetonitrile at room temperature under metal‐free conditions and exhibits a wide range of functional group compatibility. Furthermore, the reactions are highly selective in that alkyl chlorides and primary and secondary alkyl bromides remain intact. A radical mechanism is proposed for this selective fluorination.  相似文献   

10.
The Suzuki reaction of aryl bromides is efficiently catalyzed by palladium/ phosphite complexes generated in situ. The influence of ligand, base, and different additives is examined. The process tolerates various functional groups and catalyst turnover numbers up to 820,000 are obtained even with deactivated aryl bromides. For the first time it is shown that palladium/phosphite complexes also catalyze efficiently the Suzuki reaction of aryl chlorides.  相似文献   

11.
Readily accessed cobalt pre‐catalysts with N‐heterocyclic carbene ligands catalyze the Suzuki cross‐coupling of aryl chlorides and bromides with alkyllithium‐activated arylboronic pinacolate esters. Preliminary mechanistic studies indicate that the cobalt species is reduced to Co0 during the reaction.  相似文献   

12.
A convenient approach has been developed to prepare polyfluorobiphenyl by Pd(OAc)2/PCy3‐catalyzed direct arylation of polyfluoroarenes with aromatic halides in the presence of Cs2CO3 as base and toluene as solvent. In most cases, the desired arylated products of aromatic bromides were obtained in good to excellent yield at 80°C, and aryl chlorides also gave modest to good yields of arylated products at 110°C. According to this efficient C―C bondforming method, polyfluorobiphenyl liquid crystal compounds were prepared by Pd‐catalyzed direct arylation reactions of polyfluoroarenes with long alkyl chain substituted aryl bromides in 62–96% yield. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Transition‐metal‐catalyzed difluoroalkylation of aromatics remains challenging despite the importance of difluoroalkylated arenes in medicinal chemistry. Herein, the first successful example of nickel‐catalyzed difluoroalkylation of aryl boronic acids is described. The reaction allows access to a variety of functionalized difluoromethyl bromides and chlorides, and paves the way to highly cost‐efficient synthesis of a wide range of difluoroalkylated arenes. The notable features of this protocol are its high generality, excellent functional‐group compatibility, low‐cost nickel‐catalyst, and practicality for gram‐scale production, thus providing a facile method for applications in drug discovery and development.  相似文献   

14.
A palladium‐catalyzed direct C‐arylation reaction of readily available cage carboranyllithium reagents with aryl halides has been developed for the first time. This method is applicable to a wide range of aryl halide substrates including aryl iodides, aryl bromides, and heteroaromatic halides.  相似文献   

15.
Ligand‐free Suzuki reactions catalyzed by Pd/C can be efficiently performed in TX100 microemulsions. A number of aryl halides, including aryl iodides, bromides, and chlorides, were coupled with arylboronic acids smoothly and efficiently to produce good to excellent yields.  相似文献   

16.
An alternative method for synthesis of biaryls has been developed through the Pd catalyzed desulfitative coupling reaction of sodium arylsulfinates with aryl bromides and chlorides. The procedure tolerates a variety of functional groups, such as cyano, formyl, acetyl, chloro, methoxy, trifluoromethyl and heteroaromatic unit. The desired products were obtained in moderate to excellent yields under relatively mild reaction conditions without additives, base or co-catalyst.  相似文献   

17.
A visible‐light‐promoted iridium photoredox and nickel dual‐catalyzed cross‐coupling procedure for the formation C?N bonds has been developed. With this method, various aryl amines were chemoselectively cross‐coupled with electronically and sterically diverse aryl iodides and bromides to forge the corresponding C?N bonds, which are of high interest to the pharmaceutical industries. Aryl iodides were found to be a more efficient electrophilic coupling partner. The coupling reactions were carried out at room temperature without the rigorous exclusion of molecular oxygen, thus making this newly developed Ir‐photoredox/Ni dual‐catalyzed procedure very mild and operationally simple.  相似文献   

18.
CuI‐catalyzed coupling reactions of aryl iodides and electron‐deficient aryl bromides with nitrogen‐containing reagents, such as imidazole, benzimidazole, aliphatic primary and secondary amines, aniline, primary and secondary amides, in ionic liquid were developed. The reaction conditions involved the use of [Bmim][BF4] as the solvent, potassium phosphate as the base, and CuI as the catalyst. The CuI and [Bmim][BF4] could be recovered and recycled for five consecutive trials without significant loss of their activity.  相似文献   

19.
An improved method for the reductive coupling of aryl and vinyl bromides with alkyl halides that gave high yields for a variety of substrates at room temperature with a low (2.5 to 0.5 mol %) catalyst loading is presented. Under the optimized conditions, difficult substrates, such as unhindered alkenyl bromides, can be coupled to give the desired olefins with minimal diene formation and good stereoretention. These improved conditions also worked well for aryl bromides. For example, a gram‐scale reaction was demonstrated with 0.5 mol % catalyst loading, whereas reactions at 10 mol % catalyst loading completed in as little as 20 minutes. Finally, a low‐cost single‐component pre‐catalyst, (bpy)NiI2 (bpy=2,2′‐bipyridine) that is both air‐ and moisture‐stable over a period of months was introduced.  相似文献   

20.
Stuart R. Park  John A. Murphy 《Tetrahedron》2009,65(52):10756-19345
The novel cobalt(II) crown carbene complex 12(II) has been prepared and characterised by X-ray crystallography. This complex is reduced in a one-electron process to a cobalt(I) complex that acts as a powerful single electron donor, reducing aryl halides, including aryl chlorides and demonstrating the strong electron-enriching effect on cobalt of the crown carbene ligand. The metal ion is tightly held in a tetrahedral conformation by its enveloping crown ligand—this prevents what would otherwise be expected to be an easy oxidation to cobalt(III) under standard electrochemical conditions. Complex 12 is shown to be an effective catalyst in mediated electrochemical reductions of aryl iodides at room temperature and aryl bromides at 90 °C. The electrochemically produced catalyst [from 10 mol % of added Co(II) complex] also triggers reduction of aryl chlorides, although this seems at the limit of its reactivity. However, when the cobalt(II) complex is reduced by sodium amalgam, this affords stoichiometric quantities of the active cobalt reducing agent, which affords reduction of aryl iodides and bromides as above, but also reduces aryl chlorides at elevated temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号