首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
New N‐aryl substituted 2‐(α‐naphthyl)‐4‐thiazolidinones were prepared by the cyclocondensation of α‐mercaptoacetic acid and corresponding N‐(α‐naphthyliden)anilines. The same starting materials were utilized to obtain a new series of N‐aryl‐N‐[1‐(α‐naphthyl)but‐3‐enyl]amines, which was synthesized through an addition of the Grignard reagent (allylmagnesium bromide) to the double bond C?N of the aldimines. The antichagasic and trichomonacidal in vitro activity, as well as, the antifungal and cytotoxic properties of some of these compounds were evaluated.  相似文献   

2.
The Schiff bases derived from quinoline‐8‐carbaldehyde and substituted aromatic amines were used in the synthesis of C‐8 substituted quinolines. 3‐Aryl‐2‐(8‐quinolinyl)‐4‐thiazolidinones were prepared from obtained aldimines by means of the cyclocondensation of mercapto acids. A series of 4‐N‐arylamino‐4‐(8‐quinolinyl)‐1‐butenes was synthesized through the addition of the Grignard reagent (allylmagnesium bromide) to the double bond C=N of these aldimines. The structure of the prepared compounds was established on the basis of their elemental analyses and spectral data.  相似文献   

3.
The title compound, C20H17N3, is a derivative of 1,3,5‐triaryl‐2‐pyrazoline and can act as an N,N′‐bidentate ligand. This molecule features strong fluorescence that can be explained by an extended pyridyl–C=N—N–phenyl system. The three‐dimensional structure is formed by means of an extended network of weak C—H...π hydrogen bonds supported by π–π interactions.  相似文献   

4.
Highly functionalized quinolines and pyridines could be synthesized by BF3?OEt2‐mediated reactions of vinyl azides with N‐aryl and N‐alkenyl aldimines, respectively. The reaction mechanism could be characterized as formal [4+2]‐annulation, including unprecedented enamine‐type nucleophilic attack of vinyl azides to aldimines and subsequent nucleophilic cyclization onto the resulting iminodiazonium ion moieties.  相似文献   

5.
The first highly efficient and stereoselective difluoromethylation of structurally diverse N‐tert‐butylsulfinyl ketimines has been achieved with an in situ generated PhSO2CF2? anion, which provides a powerful synthetic method for the preparation of a variety of structurally diverse homochiral α‐difluoromethyl tertiary carbinamines, including α‐difluoromethyl allylic amines and α‐difluoromethyl propargylamines. The stereocontrol mode of the present diastereoselective difluoromethylation of ketimines was found to be different from that of other known fluoroalkylations of Ntert‐butylsulfinyl aldimines, which suggests that a cyclic six‐membered transition state may be involved in the reaction.  相似文献   

6.
The title structures, both C10H10N4O, are substitutional isomers. The N—N bond lengths are longer and the C=N bond lengths are shorter by ca 0.025 Å than the respective average values in the C=N—N=C group of asymmetric triazines; the assessed respective bond orders are 1.3 and 1.7. There are N—H⋯O and N—H⋯N hydrogen bonds in both structures, with 4‐­amino‐3‐methyl‐6‐phenyl‐1,2,4‐triazin‐5(4H)‐one containing a rare bifurcated N—H⋯N,N hydrogen bond. The structures differ in their mol­ecular stacking and the hydrogen‐bonding patterns.  相似文献   

7.
Hindered rotation about the partial double C—N bonds between the amine and pyridine moieties in the title mol­ecule, C16H14N4, results in two different conformations of the N‐aryl‐2‐amino­pyridine units. One, assuming an E conformation, is involved in a pair of N—H⋯N hydrogen bonds that generate a centrosymmetric (8) motif. The second, adopting a Z conformation, is not engaged in any hydrogen bonding and is flattened, the dihedral angle between the benzene and pyridine rings being 12.07 (7)°. This conformation is stabilized by an intramolecular C—H⋯N interaction [C⋯N = 2.9126 (19) Å, H⋯N = 2.31 Å and C—H⋯N = 120°].  相似文献   

8.
β‐Aminoalkylboronic acids are bioisosteres of the pharmaceutically important class of β‐amino acids but few stereoselective methods exist for their preparation. The 1,2‐addition of lithiated 1,1‐diborylalkanes onto chiral Ntert‐butanesulfinyl aldimines produces β‐sulfinimido gem‐bis(boronates) in good to excellent yields with high diastereoselectivity. The optimized conditions involve the use of rubidium fluoride and water, and are compatible with functionalized alkyl, aryl, alkenyl, and alkynyl substituents. Under these conditions, the geminal quaternary alkyl bis(pinacolatoboryl) intermediates undergo a highly diastereoselective monoprotodeboronation to afford a wide range of syn‐α,β‐disubstituted β‐aminoalkylboronates. This novel application of protodeboronation chemistry was shown to result from a kinetically controlled, diastereotopic‐group‐selective B?C bond protolysis dictated by the configuration of the adjacent stereogenic C?N center. Facile acidic cleavage of the sulfinimide auxiliary produces the free aminoboronates with high enantiomeric purity.  相似文献   

9.
Amphiphilic, biocompatible poly(N‐vinylpyrrolidone)‐b‐poly(l ‐lactide) (PVP‐b‐PLLA) block polymers were synthesized at 60 °C using a hydroxyl‐functionalized N,N‐diphenyldithiocarbamate reversible addition–fragmentation chain transfer (RAFT) agent, 2‐hydroxyethyl 2‐(N,N‐diphenylcarbamothioylthio)propanoate (HDPCP), as a dual initiator for RAFT polymerization and ring‐opening polymerization (ROP) in a one‐step procedure. 4‐Dimethylamino pyridine was used as the ROP catalyst for l ‐lactide. The two polymerization reactions proceeded in a controlled manner, but their polymerization rates were affected by the other polymerization process. This one‐step procedure is believed to be the most convenient method for synthesizing PVP‐b‐PLLA block copolymers. HDPCP can also be used for the one‐step synthesis of poly(N‐vinylcarbazole)‐b‐PLLA block copolymers. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1607–1613  相似文献   

10.
Amphiphilic polymer conetworks consisting of hydrophilic poly[2‐(dimethylamino)ethyl methacrylate], poly(N‐isopropylacrylamide), or poly(N,N‐dimethylacrylamide) and hydrophobic polyisobutylene chains were synthesized with a novel two‐step procedure. In the first step, a methacrylate‐multifunctional polyisobutylene crosslinker was prepared by the cationic copolymerization of isobutylene with 3‐isopropenyl‐α,α‐dimethylbenzyl isocyanate. In the second step, the methacrylate‐multifunctional polyisobutylene crosslinker, with a number‐average molecular weight of 8200 and an average functionality of approximately 4 per chain, was copolymerized radically with 2‐(dimethylamino)ethyl methacrylate, N‐isopropylacrylamide, or N,N‐dimethylacrylamide into transparent amphiphilic conetworks containing 42–47 mol % hydrophilic monomer. The synthesized conetworks were characterized with solid‐state 13C NMR spectroscopy and differential scanning calorimetry. The amphiphilic nature of the conetworks was proved by swelling in both water and n‐heptane. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6378–6384, 2006  相似文献   

11.
The Hydroalumination of 1,1,4,4‐Tetramethyl‐2,3‐diazabutadiene by Dialkylaluminium Hydrides – Synthesis of Dialkylaluminium Hydrazonides 1,1,4,4‐Tetramethyl‐2,3‐diazabutadiene reacted with dimethylaluminium hydride by hydroalumination of only one C=N double bond. The hydrazone derivative [Me2Al–N(CHMe2)–N=CMe2]2 ( 1 ) was formed which gave a dimer possessing a six‐membered Al2N4 heterocycle. The hydroalumination of both C=N double bonds was not observed. Also an excess of di(tert‐butyl)‐ or bis(trimethylsilylmethyl)aluminium hydride afforded only the product of a single hydroalumination step, a second dialkylaluminium hydride molecule was attached via a coordinative interaction between its central aluminium atom and the nitrogen atom of the C=N double bond and in addition via a 3 c‐2 e Al–H–Al bond. Compounds [(Me3C)2Al][(Me3C)2AlH]N(CHMe2)NCMe2 ( 2 ) and [(Me3SiCH2)2Al][(Me3SiCH2)2AlH]N(CHMe2)NCMe2 ( 3 ) were formed which have five‐membered Al2N2H heterocycles. Thermolysis of 2 gave by C–H activation compound [(Me3C)2Al]2[CH2C(Me)=N–]2 ( 4 ) in trace amounts which possesses two anellated AlN2C2 rings with a common N–N bond. In contrast, the thermal decomposition of 3 yielded by the cleavage of the N–N bond a dimeric dialkylaluminium methylideneamide ( 5 ) which has two intact C=N double bonds. Up to now our attempts to insert a C=N double bond into an Al–C bond remained unsuccessful, and only the formation of an adduct [(Me3C)3Al(–N=CMe2)2] ( 6 ) was observed upon treatment of tri(tert‐butyl)aluminium with the diazabutadiene derivative.  相似文献   

12.
In the title compound, C22H24N4O11, the N‐glycosidic torsion angles O′—C′—N—C and O′—C′—N—N are ?34.1 (6) and 148.8 (3)°, respectively. The mol­ecule displays an α‐d configuration with the ribo­furan­ose moiety in an O′‐exo–C′‐endo pucker. There are only weak C—H?O and C—H?N intra‐ and intermolecular interactions.  相似文献   

13.
Trialkylphosphine organocatalysis has enabled the regioselective anti‐carboboration of alkynoates with 9‐BBN‐based 1,1‐diborylalkanes to produce secondary allylboranes with β‐alkoxycarbonyl and γ‐boryl substituents. The utility of the densely functionalized allylboranes was demonstrated by the highly diastereoselective allylation of N‐(trimethylsilyl)aldimines to produce homoallylamines containing tertiary allylborane and acrylate moieties.  相似文献   

14.
The title isomers, viz. the N‐(3‐methylphenyl)‐, (I), and N‐(2‐methylphenyl)‐, (II), derivatives, both C26H28N2O4S, adopt an E configuration that places the thiophene and trimethoxyphenyl groups on opposite sides of the C=N double bond, providing a suitable orientation for formation of an intramolecular N—H...N hydrogen bond. However, while the molecule in (I) is close to being planar, the N‐methylphenyl group in (II) is twisted significantly from the plane of the remainder of the molecule. Both crystal structures are essentially layered and there are no intermolecular N—H...O hydrogen bonds. Compound (I) has a significantly higher calculated density than (II) (1.340 cf 1.305 Mg m−3), indicating that the molecular packing in the meta isomer is overall more efficient than that in the ortho isomer.  相似文献   

15.
The title Schiff base compound, N,N′‐bis­(pyrrol‐2‐yl­methyl­ene)­propane‐1,2‐di­amine, C13H16N4, forms an interesting supramolecular structure (a one‐dimensional ladder‐like polymer) in the solid state that is based on the existence of complementary intermolecular N—H⋯N=C hydrogen bonds between the monomer units. The polymer axis is collinear with the c axis of the orthorhombic unit cell. Quantum‐chemical AM1 calculations clearly indicate that self‐recognition in this system by hydrogen bonding is favoured on electrostatic grounds, since the partial atomic charge on the H atom of the pyrrole NH group (0.274 e) complements the partial atomic charge of the N atom of the C=N group (−0.239 e) on a neighbouring mol­ecule.  相似文献   

16.
In catena‐poly­[[(di‐2‐pyridyl­amine‐κ2N,N′)silver(I)]‐μ‐nico­tinato‐κ2N:O], [Ag(C6H4NO2)(C10H9N3)]n, the AgI atom is tetracoordinated by two N atoms from the di‐2‐pyridyl­amine (BPA) ligand [Ag—N = 2.3785 (18) and 2.3298 (18) Å] and by one N atom and one carboxyl­ate O atom from nicotinate ligands [Ag—N = 2.2827 (15) Å and Ag—O = 2.3636 (14) Å]. Bridging by nicotinate N and O atoms generates a polymeric chain structure, which extends along [100]. The carboxyl O atom not bonded to the Ag atom takes part in an intrachain C—H⋯O hydrogen bond, further stabilizing the chain. Pairs of chains are linked by N—H⋯O hydrogen bonds to generate ribbons. There are no π–π interactions in this complex. In catena‐poly­[[(di‐2‐pyridyl­amine‐κ2N,N′)silver(I)]‐μ‐2,6‐di­hydroxy­benzoato‐κ2O1:O2], [Ag(C7H5O4)(C10H9N3)]n, the AgI atom has a distorted tetrahedral coordination, with three strong bonds to two pyridine N atoms from the BPA ligand [Ag—N = 2.286 (5) and 2.320 (5) Å] and to one carboxyl­ate O atom from the 2,6‐di­hydroxy­benzoate ligand [Ag—O = 2.222 (4) Å]; the fourth, weaker, Ag‐atom coordination is to one of the phenol O atoms [Ag⋯O = 2.703 (4) Å] of an adjacent moiety, and this interaction generates a polymeric chain along [100]. Pairs of chains are linked about inversion centers by N—H⋯O hydrogen bonds to form ribbons, within which there are π–π interactions. The ribbons are linked about inversion centers by pairs of C—H⋯O hydrogen bonds and additional π–π interactions between inversion‐related pairs of 2,6‐di­hydroxy­benzoate ligands to generate a three‐dimensional network.  相似文献   

17.
The isomers 2,3‐, (I), 2,4‐, (II), and 2,5‐difluoro‐N‐(4‐pyridyl)benzamide, (III), all with formula C12H8F2N2O, all exhibit intramolecular C—H...O=C and N—H...F contacts [both with S(6) motifs]. In (I), intermolecular N—H...O=C interactions form one‐dimensional chains along [010] [N...O = 3.0181 (16) Å], with weaker C—H...N interactions linking the chains into sheets parallel to the [001] plane, further linked into pairs via C—H...F contacts about inversion centres; a three‐dimensional herring‐bone network forms via C—H...π(py) (py is pyridyl) interactions. In (II), weak aromatic C—H...N(py) interactions form one‐dimensional zigzag chains along [001]; no other interactions with H...N/O/F < 2.50 Å are present, apart from long N/C—H...O=C and C—H...F contacts. In (III), N—H...N(py) interactions form one‐dimensional zigzag chains [as C(6) chains] along [010] augmented by a myriad of weak C—H...π(arene) and O=C...O=C interactions and C—H...O/N/F contacts. Compound (III) is isomorphous with the parent N‐(4‐pyridyl)benzamide [Noveron, Lah, Del Sesto, Arif, Miller & Stang (2002). J. Am. Chem. Soc. 124 , 6613–6625] and the three 2/3/4‐fluoro‐N‐(4‐pyridyl)benzamides [Donnelly, Gallagher & Lough (2008). Acta Cryst. C 64 , o335–o340]. The study expands our series of fluoro(pyridyl)benzamides and augments our understanding of the competition between strong hydrogen‐bond formation and weaker influences on crystal packing.  相似文献   

18.
Two isomeric pyridine‐substituted norbornenedicarboximide derivatives, namely N‐(pyridin‐2‐yl)‐exo‐norbornene‐5,6‐dicarboximide, (I), and N‐(pyridin‐3‐yl)‐exo‐norbornene‐5,6‐dicarboximide, (II), both C14H12N2O4, have been crystallized and their structures unequivocally determined by single‐crystal X‐ray diffraction. The molecules consist of norbornene moieties fused to a dicarboximide ring substituted at the N atom by either pyridin‐2‐yl or pyridin‐3‐yl in an anti configuration with respect to the double bond, thus affording exo isomers. In both compounds, the asymmetric unit consists of two independent molecules (Z′ = 2). In compound (I), the pyridine rings of the two independent molecules adopt different conformations, i.e. syn and anti, with respect to the methylene bridge. The intermolecular contacts of (I) are dominated by C—H...O interactions. In contrast, in compound (II), the pyridine rings of both molecules have an anti conformation and the two independent molecules are linked by carbonyl–carbonyl interactions, as well as by C—H...O and C—H...N contacts.  相似文献   

19.
The title compound, C12H19N3O2, is an unusual product of silica‐catalyzed intermolecular condensation of α‐amino­isobutyric acid. The mol­ecule has three types of C—N bonds: a double bond, a cis‐amide bond and single bonds, two of which are typical and two having intermediate lengths due to π‐electron delocalization between C=N and C=O groups. The cis‐amide moieties interact to form dimers via hydrogen bonds which stack in parallel layers.  相似文献   

20.
N‐(2,6‐Diisopropylphenyl)‐N′‐(2‐pyridylethyl)pivalamidine (Dipp‐N=C(tBu)‐N(H)‐C2H4‐Py) ( 1 ), reacts with metalation reagents of lithium, magnesium, calcium, and strontium to give the corresponding pivalamidinates [(tmeda)Li{Dipp‐N=C(tBu)‐N‐C2H4‐Py}] ( 6 ), [Mg{Dipp‐N=C(tBu)‐N‐C2H4‐Py}2] ( 3 ), and heteroleptic [{(Me3Si)2N}Ae{Dipp‐N=C(tBu)‐N‐C2H4‐Py}], with Ae being Ca ( 2 a ) and Sr ( 2 b ). In contrast to this straightforward deprotonation of the amidine units, the reaction of 1 with the bis(trimethylsilyl)amides of sodium or potassium unexpectedly leads to a β‐metalation and an immediate deamidation reaction yielding [(thf)2Na{Dipp‐N=C(tBu)‐N(H)}] ( 4 a ) or [(thf)2K{Dipp‐N=C(tBu)‐N(H)}] ( 4 b ), respectively, as well as 2‐vinylpyridine in both cases. The lithium derivative shows a similar reaction behavior to the alkaline earth metal congeners, underlining the diagonal relationship in the periodic table. Protonation of 4 a or the metathesis reaction of 4 b with CaI2 in tetrahydrofuran yields N‐(2,6‐diisopropylphenyl)pivalamidine (Dipp‐N=C(tBu)‐NH2) ( 5 ), or [(thf)4Ca{Dipp‐N=C(tBu)‐N(H)}2] ( 7 ), respectively. The reaction of AN(SiMe3)2 (A=Na, K) with less bulky formamidine Dipp‐N=C(H)‐N(H)‐C2H4‐Py ( 8 ) leads to deprotonation of the amidine functionality, and [(thf)Na{Dipp‐N=C(H)‐N‐C2H4‐Py}]2 ( 9 a ) or [(thf)K{Dipp‐N=C(H)‐N‐C2H4‐Py}]2 ( 9 b ), respectively, are isolated as dinuclear complexes. From these experiments it is obvious, that β‐metalation/deamidation of N‐(2‐pyridylethyl)amidines requires bases with soft metal ions and also steric pressure. The isomeric forms of all compounds are verified by single‐crystal X‐ray structure analysis and are maintained in solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号