首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The angucyclines form the largest family of polycyclic aromatic polyketides, and have been studied extensively. Herein, we report the discovery of lugdunomycin, an angucycline‐derived polyketide, produced by Streptomyces species QL37. Lugdunomycin has unique structural characteristics, including a heptacyclic ring system, a spiroatom, two all‐carbon stereocenters, and a benzaza‐[4,3,3]propellane motif. Considering the structural novelty, we propose that lugdunomycin represents a novel subclass of aromatic polyketides. Metabolomics, combined with MS‐based molecular networking analysis of Streptomyces sp. QL37, elucidated 24 other rearranged and non‐rearranged angucyclines, 11 of which were previously undescribed. A biosynthetic route for the lugdunomycin and limamycins is also proposed. This work demonstrates that revisiting well‐known compound families and their producer strains still is a promising approach for drug discovery.  相似文献   

2.
Mining microbial genomes including those of Streptomyces reveals the presence of a large number of biosynthetic gene clusters. Unraveling this genetic potential has proved to be a useful approach for novel compound discovery. Here, we report the heterologous expression of two similar P450‐associated cyclodipeptide synthase‐containing gene clusters in Streptomyces coelicolor and identification of eight rare and novel natural products, the C3‐guaninyl indole alkaloids guanitrypmycins. Expression of different gene combinations proved that the cyclodipeptide synthases assemble cyclo‐l ‐Trp‐l ‐Phe and cyclo‐l ‐Trp‐l ‐Tyr, which are consecutively and regiospecifically modified by cyclodipeptide oxidases, cytochrome P450 enzymes, and N‐methyltransferases. In vivo and in vitro results proved that the P450 enzymes function as key biocatalysts and catalyze the regio‐ and stereospecific 3α‐guaninylation at the indole ring of the tryptophanyl moiety. Isotope‐exchange experiments provided evidence for the non‐enzymatic epimerization of the biosynthetic pathway products via keto–enol tautomerism. This post‐pathway modification during cultivation further increases the structural diversity of guanitrypmycins.  相似文献   

3.
Combinatorial biosynthesis is a technology for mixing genes responsible for the biosynthesis of secondary metabolites, in order to generate products for compound libraries serendipitously or to cause desired modifications to natural products. Both of these approaches are extremely useful in drug discovery. Streptomyces and related species are abundant in bioactive secondary metabolites and were therefore the first microbes to be used for combinatorial biosynthesis. Polyketides are the most abundant medicinal agents among natural products. Structural diversity and a wide scope of bioactivities are typical of the group. However, the common feature of polyketides is a biosynthetic process from simple carboxylic acid residues. In molecular genetics, polyketides are sub-classified as types I and II, called modular and aromatic polyketides respectively. The best-known bioactivities of aromatic polyketides are their antibacterial and antitumor effects. Genetic analysis of aromatic polyketides has resulted in almost 30 cloned and identified biosynthetic gene clusters. Several biosynthetic enzymes are flexible enough to allow their use in combinatorial biosynthesis to create high diversity compound libraries. This review describes the state of the art of combinatorial biosynthesis, giving anthracyclines as examples. Contiguous DNA sequences for antibiotics, cloned from four different anthracycline producers, provide tools for rapid lead optimization or other structural modification processes, and not only for anthracyclines. Two gene cassettes enabling fast and flexible structural modification of polyketides are introduced in this paper.  相似文献   

4.
Fragment‐based lead generation has proven to be an effective means of identifying high‐quality lead compounds for drug discovery programs. However, the fragment screening sets often used are principally comprised of sp2‐rich aromatic compounds, which limits the structural (and hence biological) diversity of the library. Herein, we describe strategies for the synthesis of a series of partially saturated bicyclic heteroaromatic scaffolds with enhanced sp3 character. Subsequent derivatization led to a fragment collection featuring regio‐ and stereo‐controlled introduction of substituents on the saturated ring system, often with formation of new stereocenters.  相似文献   

5.
6.
Pyrene-based molecules are being explored as prospective fullerene-free acceptors for organic solar cells (OSCs), due to their easy accessibility, structural planarity, and excellent electron delocalization. In this work, we successfully designed and analyzed pyrene-based acceptor materials (QL1–QL8) to investigate their photophysical and electro-optical parameters. Various geometric parameters were computed at the MPW1PW91/6-31G(d,p). Advanced quantum chemical approaches were employed to characterize the molecules. All the tailored molecules (QL1–QL8) exhibit a lower bandgap than the reference (R), signifying their superiority. Among these, QL8 was found to have a maximum absorption (λmax) at 791.37 nm and an optical bandgap (ELUMOEHOMO) minimum of 2.11 eV. Redshifted absorption spectra are observed in both gaseous and solvent phases for all the designed (QL1–QL8) molecules in contrast to R. Among these, QL4 exhibits the highest light harvesting efficiency (0.9826), and open-circuit voltage. A detailed donor–acceptor investigation of QL8/PBDB-T revealed the marvelous charge switching at the donor–acceptor interface. The approach used in this study is anticipated to facilitate the manufacturing of highly efficient OSC molecules.  相似文献   

7.
Although the role of intermolecular aromatic π–π interactions in the self‐assembly of di‐l ‐phenylalanine (l ‐Phe‐l ‐Phe, FF), a peptide that is known for hierarchical structure, is well established, the influence of intramolecular π–π interactions on the morphology of the self‐assembled structure of FF has not been studied. Herein, the role of intramolecular aromatic π–π interactions is investigated for FF and analogous alanine (Ala)‐containing dipeptides, namely, l ‐Phe‐l ‐Ala (FA) and l ‐Ala‐l ‐Phe (AF). The results reveal that these dipeptides not only form self‐assemblies, but also exhibit remarkable differences in structural morphology. The morphological differences between FF and the analogues indicate the importance of intramolecular π–π interactions, and the structural difference between FA and AF demonstrates the crucial role of the nature of intramolecular side‐chain interactions (aromatic–aliphatic or aliphatic–aromatic), in addition to intermolecular interactions, in deciding the final morphology of the self‐assembled structure. The current results emphasise that intramolecular aromatic π–π interaction may not be essential to induce self‐assembly in smaller peptides, and π (aromatic)–alkyl or alkyl–π (aromatic) interactions may be sufficient. This work also illustrates the versatility of aromatic and a combination of aromatic and aliphatic residues in dipeptides in the formation of structurally diverse self‐assembled structures.  相似文献   

8.
Layer by layer architectures consisting of four layer repetitive unit (QL) based on poly(diallydimethylammonium chloride)/poly(acrylic acid)/poly(diallydimethylammonium chloride)/ammonium polyphosphate have been deposited on cotton, polyester and their blends in order to promote the formation of an aromatic and stable carbonaceous structure (char) during combustion. The LbL-treated fabrics have been subjected to flammability (reaction to flame application) and combustion (reaction to different external heat fluxes) tests. The coatings were able to remarkably enhance the char formation of each substrate just after 1QL deposition; furthermore, 5 and 10QL assemblies have favoured the formation of intumescent-like structures with further improvement of the final residue. As a consequence, the treated fabrics have shown a strong reduction of the flammability (afterglow and incandescent melt dripping suppression) and combustion (reduced heat released). Infrared spectroscopy has pointed out the aromatic nature of the residues left after the combustion.  相似文献   

9.
Sulfonamide antibiotics are an important class of organic micropollutants in the aquatic environment. For several, sulfur dioxide extrusion products have been previously reported upon photochemical or dark oxidation. Using quantum chemical modeling calculations and transient absorption spectroscopy, it is shown that single‐electron oxidation from sulfadiazine produces the corresponding aniline radical cation. Density functional theory calculations indicate that this intermediate can exist in four protonation states. One species exhibits a low barrier for an intramolecular nucleophilic attack at the para position of the oxidized aniline ring, in which a pyrimidine nitrogen acts as a nucleophile. This attack can lead to a rearranged structure, which exhibits the same connectivity as the SO2‐extruded oxidation product that was previously observed in the aquatic environment and characterized by NMR spectroscopy. We report a detailed reaction mechanism for this intramolecular aromatic nucleophilic substitution, and we discuss the possibility of this reaction pathway for other sulfonamide drugs.  相似文献   

10.
In 1976, the first attempted synthesis of the saddle‐shaped molecule [8]circulene was reported. The next 37 years produced no advancement towards the construction of this complicated molecule. But remarkably, over the last six months, a flurry of progress has been made with two groups reporting independent and strikingly different strategies for the synthesis of [8]circulene derivatives. Herein, we present a third synthetic method, in which we target tetrabenzo[8]circulene. Our approach employs a Diels–Alder reaction and a palladium‐catalyzed arylation reaction as the key steps. Despite calculations describing the instability of [8]circulene, coupled with the reported instability of synthesized derivatives of the parent molecule, the addition of four fused benzenoid rings around the periphery of the molecule provides a highly stable structure. This increased stability over the parent [8]circulene was predicted by using Clar’s theory of aromatic sextets and is a result of the compound becoming fully benzenoid upon incorporation of these additional rings. The synthesized compound exhibits remarkable stability under ambient conditions—even at elevated temperatures—with no signs of decomposition over several months. The solid‐state structure of this compound is significantly twisted compared to the calculated structure primarily as a result of crystal‐packing forces in the solid state. Despite this contortion from the lowest‐energy structure, a range of structural data is presented confirming the presence of localized aromaticity in this large polycyclic aromatic hydrocarbon.  相似文献   

11.
Unnatural aromatic amino acids are useful tools in drug discovery, since their insertion in bioactive peptide sequences can change the side chains spatial orientation, the backbone conformation and above all, their bioactivity. In this communication, we propose a straightforward method to synthesize 2′,6′‐dimethyl‐tyrosine and 2′,6′‐dimehylphenyl‐alanine derivatives as handling building blocks for peptide synthesis via unsaturated diketopiperazine (DKP) intermediate.  相似文献   

12.
A popular strategy in the de novo design of stable β‐sheet structures for various biomedical applications is the incorporation of aromatic pairs at the non‐hydrogen‐bonding (NHB) position. However, it is important to explicitly understand how aryl pair packing at the NHB region is coordinated with backbone structural rearrangements, and to delineate the benefits and drawbacks associated with stereopositional choice of dissimilar aromatic pairs. Here, we probe the consequences of flipped Trp/Tyr pairs by using engineered permutants at the NHB position of dodecapeptide β‐hairpins, proximal and distal to the turn. Extensive conformational analysis of these peptides using NMR and CD spectroscopy reveal that a classic Edge‐to‐Face and Face‐to‐Edge geometry at the proximal and distal aromatic pairs, respectively, in YW‐WY, is the most stabilizing. Such a preferred packing geometry in YW‐WY results in a highly twisted β‐sheet backbone, with Trp always providing a ‘Face’ orientation to its dissimilar aromatic partner Tyr. Flipping the proximal and/or distal aromatic pair distorts the ideal T‐shaped geometry, and results in alternate aryl arrangements that can adversely affect strand twist and β‐sheet stability. Our study reveals the existence of a strong stereopositional influence on the packing of dissimilar aromatic pairs. Our findings highlight the importance of modeling physical interaction forces while designing protein and peptide structures for functional applications.  相似文献   

13.
Transition‐metal‐mediated metalation of an aromatic C?H bond that is adjacent to a tertiary phosphine group in arylphosphines via a four‐membered chelate ring was first discovered in 1968. Herein, we overcome a long‐standing problem with the ortho‐C?H activation of arylphosphines in a catalytic fashion. In particular, we developed a rhodium‐catalyzed ortho‐selective C?H borylation of various commercially available arylphosphines with B2pin2 through PIII‐chelation‐assisted C?H activation. This discovery is suggestive of a generic platform that could enable the late‐stage modification of readily accessible arylphosphines.  相似文献   

14.
A strategy to reversibly switch the parallel/antiparallel helical conformation of aromatic double helices through the formation/breakage of a disulfide bond is presented. Single-crystal X-ray structures, NMR, and circular dichroism spectroscopy demonstrate that the double helices with terminal thiol groups favor an antiparallel helical arrangement both in the solid state and in solution, while the P/M bias of helicity induced by chiral segments from another extremity of the sequence is weak in this structural motif. The antiparallel helices can be rearranged to parallel helices through the disulfide connection of the sequences. This change enhances the bias of helical handedness and results in absolute chirality control of the double helices. The handedness-mediated process can be governed by the oxidation-reduction cycle, thereby switching the structural arrangement and the enhancement of chiral bias. In addition, we find that the sequences can dimerize into an intermolecular double helix with the disulfide connection. And the helical handedness is also fully controlled due to the head-to-head structural motif.  相似文献   

15.
Background: Polycyclic aromatic polyketides, such as the tetracyclines and anthracyclines, are synthesized by bacterial aromatic polyketide synthases (PKSs). Such PKSs contain a single set of iteratively used individual proteins for the construction of a highly labile poly-β-carbonyl intermediate that is cyclized by associated enzymes to the core aromatic polyketide. A unique polyketide biosynthetic pathway recently identified in the marine strain ‘Streptomyces maritimus’ deviates from the normal aromatic PKS model in the generation of a diverse series of chiral, non-aromatic polyketides.Results: A 21.3 kb gene cluster encoding the biosynthesis of the enterocin and wailupemycin family of polyketides from ‘S. maritimus’ has been cloned and sequenced. The biosynthesis of these structurally diverse polyketides is encoded on a 20 open reading frames gene set containing a centrally located aromatic PKS. The architecture of this novel type II gene set differs from all other aromatic PKS clusters by the absence of cyclase and aromatase encoding genes and the presence of genes encoding the biosynthesis and attachment of the unique benzoyl-CoA starter unit. In addition to the previously reported heterologous expression of the gene set, in vitro and in vivo expression studies with the cytochrome P-450 EncR and the ketoreductase EncD, respectively, support the involvement of the cloned genes in enterocin biosynthesis.Conclusions: The enterocin biosynthesis gene cluster represents the most versatile type II PKS system investigated to date. A large series of divergent metabolites are naturally generated from the single biochemical pathway, which has several metabolic options for creating structural diversity. The absence of cyclase and aromatase gene products and the involvement of an oxygenase-catalyzed Favorskii-like rearrangement provide insight into the observed spontaneity of this pathway. This system provides the foundation for engineering hybrid expression sets in the generation of structurally novel compounds for use in drug discovery.  相似文献   

16.
Microbial genomes harbor an abundance of biosynthetic gene clusters, but most are expressed at low levels and need to be activated for characterization of their cognate natural products. In this work, we report the combination of high-throughput elicitor screening (HiTES) with matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) for the rapid identification of cryptic peptide natural products. Application to Streptomyces ghanaensis identified amygdalin as an elicitor of a novel non-ribosomal peptide, which we term cinnapeptin. Complete structural elucidation revealed cinnapeptin as a cyclic depsipeptide with an unusual 2-methyl-cinnamoyl group. Insights into its biosynthesis were provided by whole genome sequencing and gene deletion studies, while bioactivity assays showed antimicrobial activity against Gram-positive bacteria and fission yeast. MALDI-HiTES is a broadly applicable tool for the discovery of cryptic peptides encoded in microbial genomes.  相似文献   

17.
Axially chiral compounds are of significant importance in modern synthetic chemistry and particularly valuable in drug discovery and development. Nonetheless, current approaches for the preparation of pure atropisomers often prove tedious. We demonstrate here a synthetic method that efficiently transfers the stereochemical information of a secondary amine organocatalyst into the axial chirality of tri‐ortho‐substituted biaryls. An aromatic ring is formed during the dehydration step of the described aldol condensation cascade, leading to highly enantioenriched binaphthyl derivatives. The fundamental course of the reaction is related to the biosynthesis of aromatic polyketides.  相似文献   

18.
The discovery of materials is increasingly guided by quantum‐mechanical crystal‐structure prediction, but the structural complexity in bulk and nanoscale materials remains a bottleneck. Here we demonstrate how data‐driven approaches can vastly accelerate the search for complex structures, combining a machine‐learning (ML) model for the potential‐energy surface with efficient, fragment‐based searching. We use the characteristic building units observed in Hittorf's and fibrous phosphorus to seed stochastic (“random”) structure searches over hundreds of thousands of runs. Our study identifies a family of hierarchically structured allotropes based on a P8 cage as principal building unit, including one‐dimensional (1D) single and double helix structures, nanowires, and two‐dimensional (2D) phosphorene allotropes with square‐lattice and kagome topologies. These findings yield new insight into the intriguingly diverse structural chemistry of phosphorus, and they provide an example for how ML methods may, in the long run, be expected to accelerate the discovery of hierarchical nanostructures.  相似文献   

19.
Novel types of spin‐labeled N,N′‐dicyclohexylcarbodiimides (DCC) are reported that bear a 2,2,6,6‐tetramethylpiperidinyloxyl (TEMPO) residue on one side and different aromatic and aliphatic cyclohexyl analogues on the other side of the diimide core. These readily available novel reagents add efficiently to aliphatic and aromatic carboxylic acids, forming two possible spin‐labeled amide derivatives with different radical distances of the resulting amide. The addition of aromatic DCC analogues proceeds with excellent selectivity, giving amides where the carboxylic acid is exclusively connected to the aromatic residue, while little or no selectivity was observed for the aliphatic congeners. The usefulness of these adducts in structural studies was demonstrated by EPR (electron paramagnetic resonance) measurements of biradical adducts of biphenyl‐4,4′‐dicarboxylic acids. These analyses also reveal high degrees of conformational bias for aromatic DCC derivatives, which further underlines the powerfulness of these novel reagents. This observation was further corroborated by quantum chemical calculations, giving a detailed understanding of the structural dynamics, while detailed information on the solid state structure of all novel reagents was obtained by X‐ray structure analyses.  相似文献   

20.
In an antibiotic lead discovery program, the known strain Streptomyces armeniacus DSM19369 has been found to produce three new natural products when cultivated on a malt‐containing medium. The challenging structural elucidation of the isolated compounds was achieved by using three independent methods, that is, chemical degradation followed by NMR spectroscopy, a computer‐assisted structure prediction algorithm, and X‐ray crystallography. The compounds, named armeniaspirol A–C ( 2 – 4 ), exhibit a compact, hitherto unprecedented chlorinated spiro[4.4]non‐8‐ene scaffold. Labeling experiments with [1‐13C] acetate, [1,2‐13C2] acetate, and [U‐13C] proline suggest a biosynthesis through a rare two‐chain mechanism. Armeniaspirols displayed moderate to high in vitro activities against Gram‐positive pathogens such as methicillin‐resistant S. aureus (MRSA) or vancomycin resistant E. faecium (VRE). As analogue 2 was active in vivo in an MRSA sepsis model, and showed no development of resistance in a serial passaging experiment, it represents a new antibiotic lead structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号