首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Rhodium‐, copper‐ and iridium‐catalyzed reactions of the 13C‐labelled diazo carbonyl substrates 18* and 19* were performed. Results obtained from copper‐ and iridium‐catalyzed reactions of the 13C‐labelled α‐diazo β‐keto ester 19* indicate that either or both of these reactions do not proceed via a free oxonium ylide but instead follow a competing non‐ylide route that delivers apparent [2,3]‐sigmatropic rearrangement products. In the case of the iridium‐catalyzed reaction of α‐diazo β‐keto ester 19* , results obtained from crossover experiments indicate that the initially formed metal‐bound ylide dissociates to give an iridium enolate and an allyl cation, which recombine to form the C?C bond.  相似文献   

2.
We prepared an iridium polymer complex having 2‐phenylpyridine as a η2‐cyclometallated ligand, a new OLED containing a solution‐processible iridium polymer as a host, and a phosphorescent iridium complex, [Ir(piq‐tBu)3] as a guest. This is the first example to apply a phosphorescent iridium complex polymer to a host material in a phosphorescent OLED. A phosphine copolymer ligand made from methyl methacrylate (MMA) and 4‐styryldiphenylphosphine can be used as an anchor polymer, which coordinates to luminescent iridium units to form a host metallopolymer easily. The OLED containing the host iridium‐complex polymer film, in which the guest, 2 wt % Ir(piq‐tBu)3, was doped, showed red electroluminescence as a result of efficient energy transfer from the iridium polymer host to the iridium guest. The maximum current efficiency of the device was 1.00, suggesting that a soluble iridium complex polymer can be used as a solution‐processible polymer host in EL devices. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4358–4365, 2009  相似文献   

3.
Pyrrole‐modified subporphyrins bearing a non‐pyrrolic cyclic unit, subporpholactone, subporpholactam, and imidazolosubporphyrin were newly synthesized. They show subporphyrin‐like absorption and fluorescence spectra that are red‐shifted in the order of subporpholactam<subporpholactone<imidazolosubporphyrin. Metalation of the imidazolosubporphyrin with (pentamethylcyclopentadienyl)iridium(III) dichloride dimer gave a complex, in which the iridium(III) atom was attached at the peripheral nitrogen atom of the imidazole moiety and the ortho‐position of the meso‐phenyl group. Reaction of this complex with diphenylacetylene gave different products depending on the used additive; a phenyl‐rearranged product in the presence of NaBArF4 (ArF=3,5‐bis(trifluoromethyl)phenyl) and two isomeric carbene complexes in the presence of KPF6.  相似文献   

4.
Pyrrole‐modified subporphyrins bearing a non‐pyrrolic cyclic unit, subporpholactone, subporpholactam, and imidazolosubporphyrin were newly synthesized. They show subporphyrin‐like absorption and fluorescence spectra that are red‐shifted in the order of subporpholactam<subporpholactone<imidazolosubporphyrin. Metalation of the imidazolosubporphyrin with (pentamethylcyclopentadienyl)iridium(III) dichloride dimer gave a complex, in which the iridium(III) atom was attached at the peripheral nitrogen atom of the imidazole moiety and the ortho‐position of the meso‐phenyl group. Reaction of this complex with diphenylacetylene gave different products depending on the used additive; a phenyl‐rearranged product in the presence of NaBArF4 (ArF=3,5‐bis(trifluoromethyl)phenyl) and two isomeric carbene complexes in the presence of KPF6.  相似文献   

5.
A series of new iridium(III) complexes containing bidentate N‐heterocyclic carbenes (NHC) functionalized with an alcohol or ether group (NHC? OR, R=H, Me) were prepared. The complexes catalyzed the alkylation of anilines with alcohols as latent electrophiles. In particular, biscationic IrIII complexes of the type [Cp*(NHC‐OH)Ir(MeCN)]2+2[BF4?] afforded higher‐order amine products with very high efficiency; up to >99 % yield using a 1:1 ratio of reactants and 1–2.5 mol % of Ir, in short reaction times (2–16 h) and under base‐free conditions. Quantitative yields were also obtained at 50 °C, although longer reaction times (48–60 h) were needed. A large variety of aromatic amines have been alkylated with primary and secondary alcohols. The reactivity of structurally related iridium(III) complexes was also compared to obtain insights into the mechanism and into the structure of possible catalytic intermediates. The IrIII complexes were stable towards oxygen and moisture, and were characterized by NMR, HRMS, single‐crystal X‐ray diffraction, and elemental analyses.  相似文献   

6.
Compared to tris(2‐phenylpyridine)iridium(III) ([Ir(ppy)3]), iridium(III) complexes containing difluorophenylpyridine (df‐ppy) and/or an ancillary triazolylpyridine ligand [3‐phenyl‐1,2,4‐triazol‐5‐ylpyridinato (ptp) or 1‐benzyl‐1,2,3‐triazol‐4‐ylpyridine (ptb)] exhibit considerable hypsochromic shifts (ca. 25–60 nm), due to the significant stabilising effect of these ligands on the HOMO energy, whilst having relatively little effect on the LUMO. Despite their lower photoluminescence quantum yields compared with [Ir(ppy)3] and [Ir(df‐ppy)3], the iridium(III) complexes containing triazolylpyridine ligands gave greater electrogenerated chemiluminescence (ECL) intensities (using tri‐n‐propylamine (TPA) as a co‐reactant), which can in part be ascribed to the more energetically favourable reactions of the oxidised complex (M+) with both TPA and its neutral radical oxidation product. The calculated iridium(III) complex LUMO energies were shown to be a good predictor of the corresponding M+ LUMO energies, and both HOMO and LUMO levels are related to ECL efficiency. The theoretical and experimental data together show that the best strategy for the design of efficient new blue‐shifted electrochemiluminophores is to aim to stabilise the HOMO, while only moderately stabilising the LUMO, thereby increasing the energy gap but ensuring favourable thermodynamics and kinetics for the ECL reaction. Of the iridium(III) complexes examined, [Ir(df‐ppy)2(ptb)]+ was most attractive as a blue‐emitter for ECL detection, featuring a large hypsochromic shift (λmax=454 and 484 nm), superior co‐reactant ECL intensity than the archetypal homoleptic green and blue emitters: [Ir(ppy)3] and [Ir(df‐ppy)3] (by over 16‐fold and threefold, respectively), and greater solubility in polar solvents.  相似文献   

7.
A novel concept of an iridium‐based bubble‐propelled Janus‐particle‐type graphene micromotor with very high surface area and with very low catalyst loading is described. The low loading of Ir catalyst (0.54 at %) allows for fast motion of graphene microparticles with high surface area of 316.2 m2 g?1. The micromotor was prepared with a simple and scalable method by thermal exfoliation of iridium‐doped graphite oxide precursor composite in hydrogen atmosphere. Oxygen bubbles generated from the decomposition of hydrogen peroxide at the iridium catalytic sites provide robust propulsion thrust for the graphene micromotor. The high surface area and low iridium catalyst loading of the bubble‐propelled graphene motors offer great possibilities for dramatically enhanced cargo delivery.  相似文献   

8.
An enantioselective iridium‐catalyzed allylic substitution with a set of highly unstabilized nucleophiles generated in situ from 2‐methylpyridines is described. Enantioenriched 2‐substituted pyridines, which are frequently encountered in natural products and pharmaceuticals, could be easily constructed by this simple method in good yields and excellent enantioselectivity. The synthetic utility of the pyridine products is demonstrated through the synthesis of a key intermediate of a reported Na+/H+ exchanger inhibitor and the total synthesis of (−)‐lycopladine A.  相似文献   

9.
Recently, IrV‐based perovskite‐like materials were proposed as oxygen evolution reaction (OER) catalysts in acidic media with promising performance. However, iridium dissolution and surface reconstruction were observed, questioning the real active sites on the surface of these catalysts. In this work, Sr2MIr(V)O6 (M=Fe, Co) and Sr2Fe0.5Ir0.5(V)O4 were explored as OER catalysts in acidic media. Their activities were observed to be roughly equal to those previously reported for La2LiIrO6 or Ba2PrIrO6. Coupling electrochemical measurements with iridium dissolution studies under chemical or electrochemical conditions, we show that the deposition of an IrOx layer on the surface of these perovskites is responsible for their OER activity. Furthermore, we experimentally reconstruct the iridium Pourbaix diagram, which will help guide future research in controlling the dissolution/precipitation equilibrium of iridium species for the design of better Ir‐based OER catalysts.  相似文献   

10.
Octahedral iridium(III) complexes containing two bidentate cyclometalating 5‐tert‐butyl‐2‐phenylbenzoxazole ( IrO ) or 5‐tert‐butyl‐2‐phenylbenzothiazole ( IrS ) ligands in addition to two labile acetonitrile ligands are demonstrated to constitute a highly versatile class of asymmetric Lewis acid catalysts. These complexes feature the metal center as the exclusive source of chirality and serve as effective asymmetric catalysts (0.5–5.0 mol % catalyst loading) for a variety of reactions with α,β‐unsaturated carbonyl compounds, namely Friedel–Crafts alkylations (94–99 % ee), Michael additions with CH‐acidic compounds (81–97 % ee), and a variety of cycloadditions (92–99 % ee with high d.r.). Mechanistic investigations and crystal structures of an iridium‐coordinated substrates and iridium‐coordinated products are consistent with a mechanistic picture in which the α,β‐unsaturated carbonyl compounds are activated by two‐point binding (bidentate coordination) to the chiral Lewis acid.  相似文献   

11.
The iridium complexes of chiral spiro aminophophine ligands, especially the ligand with 3,5‐di‐tert‐butylphenyl groups on the P atom ( 1c ) were demonstrated to be highly efficient catalysts for the asymmetric hydrogenation of alkyl aryl ketones. In the presence of KOtBu as a base and under mild reaction conditions, a series of chiral alcohols were synthesized in up to 97 % ee with high turnover number (TON up to 10 000) and high turnover frequency (TOF up to 3.7×104 h−1). Investigation on the structures of the iridium complexes of ligands (R)‐ 1a and 1c by X‐ray analyses disclosed that the 3,5‐di‐tert‐butyl groups on the P‐phenyl rings of the ligand are the key factor for achieving high activity and enantioselectivity of the catalyst. Study of the catalysts generated from the Ir‐(R)‐ 1c complex and H2 by means of ESI‐MS and NMR spectroscopy indicated that the early formed iridium dihydride complex with one (R)‐ 1c ligand was the active species, which was slowly transformed into an inactive iridium dihydride complex with two (R)‐ 1c ligands. A plausible mechanism for the reaction was also suggested to explain the observations of the hydrogenation reactions.  相似文献   

12.
Two heteroleptic iridium complexes with a general formulation of (piq)2Ir(G‐pic) were synthesized and characterized by 1H NMR, 13C NMR and element analysis, in which piq is 1‐phenylisoquinoline, G‐pic is picolinic acid derivative containing carrier‐transporting group by a non‐conjugated connection of 1,6‐dioxyhexane. Both (piq)2Ir(G‐pic) complexes exhibited an enhanced UV absorption band at 310–400 nm, an increased HOMO energy level and an identical red emission peaked at 612 nm with higher fluorescence quantum efficiency (øf), compared to (piq)2Ir(pic) in dichloromethane solution. Interestingly, this iridium complex containing both hole‐transporting triphenylamine and electron‐transporting oxadiazole moieties exhibited the best Фf of 0.58 using Ru(bpy)3(PF6)2 as the reference (øf=0.062 in acetonitrile). This work indicates that incorporating carrier‐transporting groups into ancillary ligand by a non‐conjugated connection is available for improving the optophysical properties of their iridium complexes.  相似文献   

13.
The synthesis and photophysical and electrochemical characterisation of new heteroleptic iridium complexes with electron‐withdrawing sulfonyl groups and fluorine atoms bound to phenylpyridine ligands are reported. The emission energy of these materials strongly depends on the position of the sulfonyl groups and on the number of fluorine substituents. A 90 nm wide tuning range of photoluminescence from the blue‐green (λem=468 nm) of iridium(III)bis[2‐(4′‐benzylsulfonyl)phenylpyridinato‐N,C2′][3‐(pentafluorophenyl)‐pyridin‐2‐yl‐1,2,4‐triazolate] to the orange (λem=558 nm) of iridium(III)bis[2‐(3′‐benzylsulfonyl)phenylpyridinato‐N,C2′](2,4‐decanedionate) has been achieved. Emission quantum yields ranging from 47 to 71 % have also been found for degassed solutions of the complexes, and a surprisingly high value of 16 % was recorded for iridium(III)bis[2‐(5′‐benzylsulfonyl‐3′,6′‐difluoro)phenylpyridinato‐N,C2′](2,4‐decanedionate) in air‐equilibrated dichloromethane. A unusual stereochemistry of the benzylsulfonyl‐substituted dimer and heteroleptic complexes has been detected by 1H NMR spectroscopy, and is characterised by the mutual cis disposition of the pyridyl nitrogen atoms of the phenylpyridine ligands, which differs from the most common trans arrangement reported in the literature.  相似文献   

14.
Combining the advantages of homogeneous and heterogeneous catalysts, single‐atom catalysts (SACs) are bringing new opportunities to revolutionize ORR catalysis in terms of cost, activity and durability. However, the lack of high‐performance SACs as well as the fundamental understanding of their unique catalytic mechanisms call for serious advances in this field. Herein, for the first time, we develop an Ir‐N‐C single‐atom catalyst (Ir‐SAC) which mimics homogeneous iridium porphyrins for high‐efficiency ORR catalysis. In accordance with theoretical predictions, the as‐developed Ir‐SAC exhibits orders of magnitude higher ORR activity than iridium nanoparticles with a record‐high turnover frequency (TOF) of 24.3 e? site?1 s?1 at 0.85 V vs. RHE) and an impressive mass activity of 12.2 A mg?1Ir, which far outperforms the previously reported SACs and commercial Pt/C. Atomic structural characterizations and density functional theory calculations reveal that the high activity of Ir‐SAC is attributed to the moderate adsorption energy of reaction intermediates on the mononuclear iridium ion coordinated with four nitrogen atom sites.  相似文献   

15.
Heterogenization of metal‐complex catalysts for water oxidation without loss of their catalytic activity is important for the development of devices simulating photosynthesis. In this study, efficient heterogeneous iridium complexes for water oxidation were prepared using bipyridine‐bridged periodic mesoporous organosilica (BPy‐PMO) as a solid chelating ligand. The BPy‐PMO‐based iridium catalysts (Ir‐BPy‐PMO) were prepared by postsynthetic metalation of BPy‐PMO and characterized through physicochemical analyses. The Ir‐BPy‐PMOs showed high catalytic activity for water oxidation. The turnover frequency (TOF) values for Ir‐BPy‐PMOs were one order of magnitude higher than those of conventional heterogeneous iridium catalysts. The reusability and stability of Ir‐BPy‐PMO were also examined, and detailed characterization was conducted using powder X‐ray diffraction, nitrogen adsorption, 13C DD MAS NMR spectroscopy, TEM, and XAFS methods.  相似文献   

16.
By combining the iridium(III) ppy‐type complex (Hppy=2‐phenylpyridine) with a square‐planar platinum(II) unit, some novel phosphorescent oligometallaynes bearing dual metal centers (viz. IrIII and PtII) were developed by combining trans‐[Pt(PBu3)2Cl2] with metalloligands of iridium possessing bifunctional pendant acetylene groups. Photophysical and computational studies indicated that the phosphorescent excited states arising from these oligometallaynes can be ascribed to the triplet emissive IrIII ppy‐type chromophore, owing to the obvious trait (such as the longer phosphorescent lifetime at 77 K) also conferred by the PtII center. So, the two different metal centers show a synergistic effect in governing the photophysical behavior of these heterometallic oligometallaynes. The inherent nature of these amorphous materials renders the fabrication of simple solution‐processed doped phosphorescent organic light‐emitting diodes (PHOLEDs) feasible by effectively blocking the close‐packing of the host molecules. Saliently, such a synergistic effect is also important in affording decent device performance for the solution‐processed PHOLEDs. A maximum brightness of 3 356 cd m?2 (or 2 708 cd m?2), external quantum efficiency of 0.50 % (or 0.67 %), luminance efficiency of 1.59 cd A?1 (or 1.55 cd A?1), and power efficiency of 0.60 Lm W?1 (or 0.55 Lm W?1) for the yellow (or orange) phosphorescent PHOLEDs can be obtained. These results show the great potential of these bimetallic emitters for organic light‐emitting diodes.  相似文献   

17.
A step‐economical and stereodivergent synthesis of privileged 2‐arylcyclopropylamines (ACPAs) through a C(sp3)? H borylation and Suzuki–Miyaura coupling sequence has been developed. The iridium‐catalyzed C? H borylation of N‐cyclopropylpivalamide proceeds with cis selectivity. The subsequent B‐cyclopropyl Suzuki–Miyaura coupling catalyzed by [PdCl2(dppf)]/Ag2O proceeds with retention of configuration at the carbon center bearing the Bpin group, while epimerization at the nitrogen‐bound carbon atoms of both the starting materials and products is observed under the reaction conditions. This epimerization is, however, suppressed in the presence of O2. The present new ACPA synthesis results in not only a significant reduction in the steps required for making ACPA derivatives, but also the ability to access either isomer (cis or trans) by simply changing the atmosphere (N2 or O2) in the coupling stage.  相似文献   

18.
A step‐economical and stereodivergent synthesis of privileged 2‐arylcyclopropylamines (ACPAs) through a C(sp3) H borylation and Suzuki–Miyaura coupling sequence has been developed. The iridium‐catalyzed C H borylation of N‐cyclopropylpivalamide proceeds with cis selectivity. The subsequent B‐cyclopropyl Suzuki–Miyaura coupling catalyzed by [PdCl2(dppf)]/Ag2O proceeds with retention of configuration at the carbon center bearing the Bpin group, while epimerization at the nitrogen‐bound carbon atoms of both the starting materials and products is observed under the reaction conditions. This epimerization is, however, suppressed in the presence of O2. The present new ACPA synthesis results in not only a significant reduction in the steps required for making ACPA derivatives, but also the ability to access either isomer (cis or trans) by simply changing the atmosphere (N2 or O2) in the coupling stage.  相似文献   

19.
The reaction of [Cp*Ir(bzpy)NO3] ( 1 ; bzpy=2‐benzoylpyridine, Cp*=pentamethylcyclopentadienyl anion), a competent water‐oxidation catalyst, with several oxidants (H2O2, NaIO4, cerium ammonium nitrate (CAN)) was studied to intercept and characterize possible intermediates of the oxidative transformation. NMR spectroscopy and ESI‐MS techniques provided evidence for the formation of many species that all had the intact Ir–bzpy moiety and a gradually more oxidized Cp* ligand. Initially, an oxygen atom is trapped in between two carbon atoms of Cp* and iridium, which gives an oxygen–Ir coordinated epoxide, whereas the remaining three carbon atoms of Cp* are involved in a η3 interaction with iridium ( 2 a ). Formal addition of H2O to 2 a or H2O2 to 1 leads to 2 b , in which a double MeCOH functionalization of Cp* is present with one MeCOH engaged in an interaction with iridium. The structure of 2 b was unambiguously determined in the solid state and in solution by X‐ray single‐crystal diffractometry and advanced NMR spectroscopic techniques, respectively. Further oxidation led to the opening of Cp* and transformation of the diol into a diketone with one carbonyl coordinated at the metal ( 2 c ). A η3 interaction between the three non‐oxygenated carbons of “ex‐Cp*” and iridium is also present in both 2 b and 2 c . Isolated 2 b and mixtures of 2 a – c species were tested in water‐oxidation catalysis by using CAN as sacrificial oxidant. They showed substantially the same activity than 1 (turnover frequency values ranged from 9 to 14 min?1).  相似文献   

20.
A series of novel quasi‐scorpionate CNC donor ligands, MeC(2‐C5H4N){CH2(imidazole‐R)} (R = methyl, n‐butyl, n‐propenyl), in which a chelating bis(NHC) core is supplemented by a hemi‐labile pyridyl donor, were prepared. The coordination chemistry of these ligands was investigated with silver, palladium, rhodium and iridium. The single crystal X‐ray structures of [Rh(NC2Me)(COD)]Cl 8a and [Ir(NC2Pr)(COD)]Br 9b were determined. The catalytic potential of the rhodium and iridium complexes was assessed in the transfer hydrogenation of ketones; the iridium complexes, which show superior performance, form very effective and stable catalysts. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号