首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Aqueous RAFT polymerization of N‐isopropylacrylamide (NIPAM) mediated with hydrophilic macro‐RAFT agent is generally used to prepare poly(N‐isopropylacrylamide) (PNIPAM)‐based block copolymer. Because of the phase transition temperature of the block copolymer in water being dependent on the chain length of the PNIPAM block, the aqueous RAFT polymerization is much more complex than expected. Herein, the aqueous RAFT polymerization of NIPAM in the presence of the hydrophilic macro‐RAFT agent of poly(dimethylacrylamide) trithiocarbonate is studied and compared with the homogeneous solution RAFT polymerization. This aqueous RAFT polymerization leads to the well‐defined poly(dimethylacrylamide)‐b‐poly(N‐isopropylacrylamide)‐b‐poly(dimethylacrylamide) (PDMA‐b‐PNIPAM‐b‐PDMA) triblock copolymer. It is found, when the triblock copolymer contains a short PNIPAM block, the aqueous RAFT polymerization undergoes just like the homogeneous one; whereas when the triblock copolymer contains a long PNIPAM block, both the initial homogeneous polymerization and the subsequent dispersion polymerization are involved and the two‐stage ln([M]o/[M])‐time plots are indicated. The reason that the PNIPAM chain length greatly affects the aqueous RAFT polymerization is discussed. The present study is anticipated to be helpful to understand the chain extension of thermoresponsive block copolymer during aqueous RAFT polymerization. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

2.
The synthesis of a molecular brush was accomplished by combining step‐growth polymerization and reversible addition fragmentation chain transfer (RAFT) polymerization in a “grafting from” methodology. A symmetrical N‐alkyl urea peptoid sixmer containing alkyne functional groups was prepared using a divergent strategy, and the structure of the product was confirmed using NMR spectroscopy and mass spectrometry. A step‐growth process was used to prepare a linear poly(N‐alkyl urea peptoid) by reacting the diamine‐functionalized N‐alkyl urea peptoid sixmer with a diisocyanate. RAFT chain transfer agents were coupled to the poly(N‐alkyl urea peptoid) backbone through a copper‐catalyzed azide/alkyne cycloaddition reaction. The afforded macro‐RAFT agent was used to sequentially polymerize styrene and tert‐butyl acrylate block copolymer arms from the poly(N‐alkyl urea peptoid) backbone. The tert‐butyl groups were removed using dilute trifluoroacetic acid affording hydrophilic polyacrylic acid segments. The molecular brushes were observed to generate micelles in aqueous solution. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

3.
The micellar macro‐RAFT agent‐mediated dispersion polymerization of styrene in the methanol/water mixture is performed and synthesis of temperature‐sensitive ABC triblock copolymer nanoparticles is investigated. The thermoresponsive diblock copolymer of poly(N,N‐dimethylacrylamide)‐block‐poly[N‐(4‐vinylbenzyl)‐N,N‐diethylamine] trithiocarbonate forms micelles in the polymerization solvent at the polymerization temperature and, therefore, the dispersion RAFT polymerization undergoes as similarly as seeded dispersion polymerization with accelerated polymerization rate. With the progress of the RAFT polymerization, the molecular weight of the synthesized triblock copolymer of poly(N,N‐dimethylacrylamide)‐block‐poly[N‐(4‐vinylbenzyl)‐N,N‐diethylamine]‐b‐polystyrene linearly increases with the monomer conversion, and the PDI values of the triblock copolymers are below 1.2. The dispersion RAFT polymerization affords the in situ synthesis of the triblock copolymer nanoparticles, and the mean diameter of the triblock copolymer nanoparticles increases with the polymerization degree of the polystyrene block. The triblock copolymer nanoparticles contain a central thermoresponsive poly [N‐(4‐vinylbenzyl)‐N,N‐diethylamine] block, and the soluble‐to‐insoluble ‐‐transition temperature is dependent on the methanol content in the methanol/water mixture. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2155–2165  相似文献   

4.
Polymerization‐induced self‐assembly (PISA) was employed to compare the self‐assembly of different amphiphilic block copolymers. They were obtained by emulsion polymerization of styrene in water using hydrophilic poly(N‐acryloylmorpholine) (PNAM)‐based macromolecular RAFT agents with different structures. An average of three poly (ethylene glycol acrylate) (PEGA) units were introduced either at the beginning, statistically, or at the end of a PNAM backbone, resulting in formation of nanometric vesicles and spheres from the two former macroRAFT architectures, and large vesicles from the latter. Compared to the spheres obtained with a pure PNAM macroRAFT agent, composite macroRAFT architectures promoted a dramatic morphological change. The change was induced by the presence of PEGA hydrophilic side‐chains close to the hydrophobic polystyrene segment.  相似文献   

5.
Reversible addition‐fragmentation chain transfer (RAFT) polymerization is a more robust and versatile approach than other living free radical polymerization methods, providing a reactive thiocarbonylthio end group. A series of well‐defined star diblock [poly(ε‐caprolactone)‐b‐poly(N‐isopropylacrylamide)]4 (SPCLNIP) copolymers were synthesized by R‐RAFT polymerization of N‐isopropylacrylamide (NIPAAm) using [PCL‐DDAT]4 (SPCL‐DDAT) as a star macro‐RAFT agent (DDAT: S‐1‐dodecyl‐S′‐(α, α′‐dimethyl‐α″‐acetic acid) trithiocarbonate). The R‐RAFT polymerization showed a controlled/“living” character, proceeding with pseudo‐first‐order kinetics. All these star polymers with different molecular weights exhibited narrow molecular weight distributions of less than 1.2. The effect of polymerization temperature and molecular weight of the star macro‐RAFT agent on the polymerization kinetics of NIPAAm monomers was also addressed. Hardly any radical–radical coupling by‐products were detected, while linear side products were kept to a minimum by careful control over polymerization conditions. The trithiocarbonate groups were transferred to polymer chain ends by R‐RAFT polymerization, providing potential possibility of further modification by thiocarbonylthio chemistry. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

6.
Amphiphilic supramolecular miktoarm star copolymers linked by ionic bonds with controlled molecular weight and low polydispersity have been successfully synthesized via reversible addition‐fragmentation chain transfer (RAFT) polymerization using an ion‐bonded macromolecular RAFT agent (macro‐RAFT agent). Firstly, a new tetrafunctional initiator, dimethyl 4,6‐bis(bromomethyl)‐isophthalate, was synthesized and used as an initiator for atom transfer radical polymerization (ATRP) of styrene to form polystyrene (PSt) containing two ester groups at the middle of polymer chain. Then, the ester groups were converted into tertiary amino groups and the ion‐bonded supramolecular macro‐RAFT agent was obtained through the interaction between the tertiary amino group and 2‐dodecylsulfanylthiocarbonylsulfanyl‐2‐methyl propionic acid (DMP). Finally, ion‐bonded amphiphilic miktoarm star copolymer, (PSt)2‐poly(N‐isopropyl‐acrylamide)2, was prepared by RAFT polymerization of N‐isopropylacrylamide (NIPAM) in the presence of the supramolecular macro‐RAFT agent. The polymerization kinetics was investigated and the molecular weight and the architecture of the resulting star polymers were characterized by means of 1H‐NMR, FTIR, and GPC techniques. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5805–5815, 2008  相似文献   

7.
Amphiphilic, biocompatible poly(N‐vinylpyrrolidone)‐b‐poly(l ‐lactide) (PVP‐b‐PLLA) block polymers were synthesized at 60 °C using a hydroxyl‐functionalized N,N‐diphenyldithiocarbamate reversible addition–fragmentation chain transfer (RAFT) agent, 2‐hydroxyethyl 2‐(N,N‐diphenylcarbamothioylthio)propanoate (HDPCP), as a dual initiator for RAFT polymerization and ring‐opening polymerization (ROP) in a one‐step procedure. 4‐Dimethylamino pyridine was used as the ROP catalyst for l ‐lactide. The two polymerization reactions proceeded in a controlled manner, but their polymerization rates were affected by the other polymerization process. This one‐step procedure is believed to be the most convenient method for synthesizing PVP‐b‐PLLA block copolymers. HDPCP can also be used for the one‐step synthesis of poly(N‐vinylcarbazole)‐b‐PLLA block copolymers. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1607–1613  相似文献   

8.
Dual thermo‐ and pH‐sensitive network‐grafted hydrogels made of poly(N,N‐dimethylaminoethyl methacrylate) (PDMAEMA) network and poly(N‐isopropylacrylamide) (PNIPAM) grafting chains were successfully synthesized by the combination of atom transfer radical polymerization (ATRP), reversible addition‐fragmentation chain transfer (RAFT) polymerization, and click chemistry. PNIPAM having two azide groups at one chain end [PNIPAM‐(N3)2] was prepared with an azide‐capped ATRP initiator of N,N‐di(β‐azidoethyl) 2‐chloropropionylamide. Alkyne‐pending poly(N,N‐dimethylaminoethyl methacrylate‐co‐propargyl acrylate) [P(DMAEMA‐co‐ProA)] was obtained through RAFT copolymerization using dibenzyltrithiocarbonate as chain transfer agent. The subsequent click reaction led to the formation of the network‐grafted hydrogels. The influences of the chemical composition of P(DMAEMA‐co‐ProA) on the properties of the hydrogels were investigated in terms of morphology and swelling/deswelling kinetics. The dual stimulus‐sensitive hydrogels exhibited fast response, high swelling ratio, and reproducible swelling/deswelling cycles under different temperatures and pH values. The uptake and release of ceftriaxone sodium by these hydrogels showed both thermal and pH dependence, suggesting the feasibility of these hydrogels as thermo‐ and pH‐dependent drug release devices. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

9.
Poly[N‐(4‐vinylbenzyl)‐N,N‐dibutylamine hydrochloride] trithiocarbonate, which contains the reactive trithiocarbonate group and the appending surface‐active groups, is used as both surfactant and macromolecular reversible addition‐fragmentation chain transfer (macro‐RAFT) agent in batch emulsion polymerization of styrene. Under the conditions at high monomer content of ~20 wt % and with the molecular weight of the macro‐RAFT agent ranging from 4.0 to 15.0 kg/mol, well‐controlled batch emulsion RAFT polymerization initiated by the hydrophilic 2‐2′‐azobis(2‐methylpropionamidine) dihydrochloride is achieved. The polymerization leads to formation of nano‐sized colloids of the poly[N‐(4‐vinylbenzyl)‐N,N‐dibutylamine hydrochloride]‐b‐ polystyrene‐b‐poly[N‐(4‐vinylbenzyl)‐N,N‐dibutylamine hydrochloride] triblock copolymer. The colloids generally have core‐shell structure, in which the hydrophilic block forms the shell and the hydrophobic block forms the core. The molecular weight of the triblock copolymer linearly increases with increase in the monomer conversion, and the values are well‐consistent with the theoretical ones. The molecular weight polydispersity index of the triblock copolymer is below 1.2 at most cases of polymerization. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

10.
A new bipyridine‐functionalized dithioester was synthesized and further used as a RAFT agent in RAFT polymerization of styrene and N‐isopropylacrylamide. Kinetics analysis indicates that it is an efficient chain transfer agent for RAFT polymerization of the two monomers which produce polystyrene and poly(N‐isopropylacrylamide) polymers with predetermined molecular weights and low polydispersities in addition to the end functionality of bipyridine. The bipyridine end‐functionalized polymers were further used as macroligands for the preparation of star‐shaped metallopolymers. Hydrophobic polystyrene macroligand combined with hydrophiphilic poly(N‐isopropylacrylamide) was complexed with ruthenium ions to produce amphiphilic ruthenium‐cored star‐shaped metallopolymers. The structures of these synthesized metallopolymers were further elucidated by UV–vis, fluorescence, size exclusion chromatography (SEC), and differential scanning calorimetry (DSC) as well as NMR techniques. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4225–4239, 2007  相似文献   

11.
The reversible addition fragmentation chain transfer (RAFT) polymerization of styrene in alcohol/water mixture mediated with the poly(N‐isopropylacrylamide) trithiocarbonate macro‐RAFT agent (PNIPAM‐TTC) is studied and compared with the general RAFT dispersion polymerization in the presence of a small molecular RAFT agent. Both the homogeneous/quasi‐homogeneous polymerization before particle nucleation and the heterogeneous polymerization after particle nucleation are involved in the PNIPAM‐TTC‐mediated RAFT polymerization, and the two‐stage increase in the molecular weight (Mn) and nanoparticle size of the synthesized block copolymer is found. In the initial homogeneous/quasi‐homogeneous polymerization, the Mn and nanoparticle size slowly increase with monomer conversion, whereas the Mn and particle size quickly increase in the subsequent heterogeneous RAFT polymerization, which is much different from those in the general RAFT dispersion polymerization. Besides, the PNIPAM‐TTC‐mediated RAFT polymerization runs much faster than the general RAFT dispersion polymerization. This study is anticipated to be helpful to understand the polymer chain extension through RAFT polymerization under dispersion conditions. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

12.
Polymerization‐induced self‐assembly (PISA) has become the preferred method of preparing self‐assembled nano‐objects based on amphiphilic block copolymers. The PISA methodology has also been extended to the realization of colloidal nanocomposites, such as polymer–silica hybrid particles. In this work, we compare two methods to prepare nanoparticles based on self‐assembly of block copolymers bearing a core‐forming block with a reactive alkoxysilane moiety (3‐(trimethoxysilyl)propyl methacrylate, MPS), namely (i) RAFT emulsion polymerization using a hydrophilic macroRAFT agent and (ii) solution‐phase self‐assembly upon slow addition of a selective solvent. Emulsion polymerization under both ab initio and seeded conditions were studied, as well the use of different initiating systems. Effective and reproducible chain extension (and hence PISA) of MPS via thermally initiated RAFT emulsion polymerization was compromised due to the hydrolysis and polycondensation of MPS occurring under the reaction conditions employed. A more successful approach to block copolymer self‐assembly was achieved via polymerization in a good solvent for both blocks (1,4‐dioxane) followed by the slow addition of water, yielding spherical nanoparticles that increased in size as the length of the solvophobic block was increased. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 420–429  相似文献   

13.
The use of amphiphilic triblock copolymers bearing a reactive alkoxysilane middle block as polymeric stabilizers is reported in this work. A series of poly(ethylene glycol) methyl ether methacrylate‐b‐(3‐trimethoxysilyl)propyl methacrylate‐b‐benzyl methacrylate (PEGMA‐b‐MPS‐b‐BzMA) triblock copolymers were prepared by RAFT solution polymerization and polymerization‐induced self‐assembly (PISA), respectively, where the various block lengths and overall composition were varied. The copolymers prepared by solution polymerization were employed as oil‐in‐water stabilizers where upon application of a catalyst, the 3‐(trimethoxysilyl)propyl methacrylate (MPS) block at the droplet interface was crosslinked to yield capsule‐like structures. The effectiveness of interfacial crosslinking was validated by dynamic light scattering and electron microscopy. In situ self‐assembly by the PISA method resulted in spherical nanoparticles of controllable size that were readily crosslinked by addition of base, with significant enhancement of colloidal stability. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1897–1907  相似文献   

14.
Amphiphilic tris(2,2′‐bipyridine)ruthenium‐cored star‐shaped polymers consisting of one polystyrene block and two poly(N‐isopropylacrylamide) blocks were prepared by the “arm‐first” method in which RAFT polymerization and nonconvalent ligand–metal complexation were employed. The prepared amphiphilic star‐shaped metallopolymers are able to form micelles in water. The size and distribution of the micelles were studied by dynamic light scattering and transmission electron microscopy techniques. Preliminary studies indicate that the polymer concentration and the hydrophilic poly(N‐isopropylacrylamide) block length can affect the morphologies of the formed metal‐interfaced core–shell micelles in water. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4204–4210, 2007  相似文献   

15.
Dipeptide diphenylalanine has attracted significant research interests because of its ability to self‐assemble into various nanostructures such as nanotubes, nanowires, and nanoribbons. In this article, we present the synthesis and self‐assembly of a novel diphenylalanine‐based homopolymer and block/random copolymers by the reversible addition–fragmentation chain transfer (RAFT) polymerization of an acrylamide having a dipeptide moiety. The RAFT polymerization of N‐acryloyl‐l ,l ‐diphenylalanine (A‐Phe‐Phe‐OH) afforded novel amino acid‐based polymers with predetermined molecular weights and relatively narrow‐molecular weight distributions. The hierarchical self‐assembled structures of poly(A‐Phe‐Phe‐OH), which involve nanorods, larger nanofiber‐like microcrystals, and fiber bundles, were characterized by atomic force microscopy (AFM), transmission electron microscopy, scanning electron microscopy, and dynamic light scattering measurements. The circular dichroic measurements of poly(A‐Phe‐Phe‐OH) revealed its characteristic chiroptical property, which is affected by the nature of the solvents and the addition of urea and salts via hydrophobic, hydrogen bonding, and electrostatic interactions. Thermo‐ and pH‐responsive block and random copolymers composed of A‐Phe‐Phe‐OH and N‐isopropylacrylamide were synthesized by RAFT polymerization, and the thermoresponsive properties and assembled structures of the resulting copolymers were investigated by AFM and turbidity measurements. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2562–2574  相似文献   

16.
A new range of selenium‐based reversible addition‐fragmentation chain‐transfer (RAFT) agents is described and tested in the polymerization of styrene, acrylates, vinyl esters, and N‐vinylcaprolactam. The synthesized N,N‐dimethyldiselenocarbamates were poor control agents for styrene polymerization, whereas polyacrylates of controlled molar masses and bearing a diselenocarbamate terminal group could be synthesized. The polymerization of vinyl acetate and vinyl pivalate proceeded in a controlled manner as confirmed by size‐exclusion chromatography, matrix‐assisted laser desorption ionization‐time‐of‐flight mass spectrometry, and 77Se NMR analyses. The capability of these RAFT agents to control the polymerization of both more‐activated monomers and less‐activated monomers was exemplified through the synthesis of a poly(t‐butyl acrylate)‐b‐poly(vinyl acetate) diblock copolymer. Considering the very broad range of carbamate groups which can be envisioned, this finding opens numerous perspectives for diselenocarbamate‐mediated RAFT polymerization with its specificities yet to be explored. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4361–4368  相似文献   

17.
The reversible addition‐fragmentation chain transfer (RAFT) polymerization of N‐vinylcarbazole (NVK) mediated by macromolecular xanthates was used to prepare three types of block copolymers containing poly(N‐vinylcarbazole) (PVK). Using a poly(ethylene glycol) monomethyl ether based xanthate ( PEG‐X ), the RAFT polymerization of NVK proceeded in a controlled way to afford a series of PEG‐b‐PVK with different PVK chain lengths. Successive RAFT polymerization of NVK and vinyl acetate (VAc) with a small molecule xanthate ( X1 ) as the chain transfer agent was tested to prepare PVK‐b‐PVAc. Though both monomers can be homopolymerized in a controlled manner with this xanthate, only by polymerizing NVK first could give well‐defined block copolymers. The xanthate groups in the end of PVK could be removed by radical‐induced reduction using tributylstannane, and PVK‐b‐PVA was obtained by further hydrolysis of PVK‐b‐PVAc under basic conditions. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

18.
Surface‐initiated reversible addition‐fragmentation chain transfer (SI‐RAFT) polymerization of N‐[3‐(dimethylamino)propyl]methacrylamide (DMAPMA) on the silicon wafer was conducted in attempt to create controllable cationic polymer films. The RAFT agent‐immobilized substrate was prepared by the silanization of hydroxyl groups on silicon wafer with 3‐aminopropylthriethoxysilane (APTS) and by the amide reaction of amine groups of APTS with ester groups of 4‐cyano‐4‐((thiobenzoyl) sulfanyl) pentanoic succinimide ester (CPSE); followed by the RAFT polymerization of DMAPMA using a “free” RAFT agent, that is, 4‐cyanopentanoic acid dithiobenzoate (CPAD) and an initiator, that is, 4,4′‐azobis‐4‐cyanopentanoic acid (CPA). The formation of homogeneous tethered poly(N‐[3‐(dimethylamino)propyl]methacrylamide) [poly(DMAPMA)] brushes, whose thickness can be tuned by reaction time varying, is evidenced by using the combination of grazing angle attenuated total reflectance‐Fourier transform infrared spectroscopy, X‐ray photoelectron spectroscopy, atomic force microscopy, and water contact‐angle measurements. The calculation of grafting parameters from the number‐average molecular weight, M n (g/mol) and ellipsometric thickness, h (nm) values indicated the synthesis of densely grafted poly(DMAPMA) films and allowed us to predict a polymerization time for forming a “brush‐like” conformation for the chains. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

19.
The nonionic amphiphilic brush polymers such as poly[poly(ethylene oxide) methyl ether vinylphenyl‐co‐styrene] trithiocarbonate [P(mPEGV‐co‐St)‐TTC] and poly[poly(ethylene oxide) methyl ether vinylphenyl‐b‐styrene‐b‐poly(ethylene oxide) methyl ether vinylphenyl] trithiocarbonate [P(mPEGV‐b‐St‐b‐mPEGV)‐TTC] with different monomer sequence and chemical composition are synthesized and their application as macro‐RAFT agent in the emulsion RAFT polymerization of styrene is explored. It is found that the monomer sequence in the brush polymers exerts great influence on the emulsion RAFT polymerization kinetics, and the fast polymerization with short induction period in the presence of P(mPEGV‐co‐St)‐TTC is demonstrated. Besides, the chemical composition in the brush polymer macro‐RAFT agent effect on the emulsion RAFT polymerization is investigated, and the macro‐RAFT agent with high percent of the hydrophobic PS segment leads to fast and well controlled polymerization. The growth of triblock copolymer colloids in the emulsion polymerization is checked, and it reveals that the colloidal morphology is ascribed to the hydrophobic PS block extension, and the P(mPEGV‐co‐St) block almost have no influence just on the size of the colloids. This may be the first example to study the monomer sequence and the chemical composition in the macro‐RAFT agent on emulsion RAFT polymerization, and will be useful to reveal the block copolymer particle growth. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

20.
Polyisobutylene‐b‐poly(N,N‐diethylacrylamide) (PIB‐b‐PDEAAm) well‐defined amphiphilic diblock copolymers were synthesized by sequential living carbocationic polymerization and reversible addition‐fragmentation chain transfer (RAFT) polymerization. The hydrophobic polyisobutylene segment was first built by living carbocationic polymerization of isobutylene at ?70 ° C followed by multistep transformations to give a well‐defined (Mw/Mn = 1.22) macromolecular chain transfer agent, PIB‐CTA. The hydrophilic poly(N,N‐diethylacrylamide) block was constructed by PIB‐CTA mediated RAFT polymerization of N,N‐diethylacrylamide at 60 ° C to afford the desired well‐defined PIB‐b‐PDEAAm diblock copolymers with narrow molecular weight distributions (Mw/Mn ≤1.26). Fluorescence spectroscopy, transmission electron microscope, and dynamic light scattering (DLS) were employed to investigate the self‐assembly behavior of PIB‐b‐PDEAAm amphiphilic diblock copolymers in aqueous media. These diblock copolymers also exhibited thermo‐responsive phase behavior, which was confirmed by UV‐Vis and DLS measurements. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1143–1150  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号