首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Efficient hydrogen evolution via electrocatalytic water splitting holds great promise in modern energy devices. Herein, we demonstrate that the localized surface plasmon resonance (LSPR) excitation of Au nanorods (NRs) dramatically improves the electrocatalytic hydrogen evolution activity of CoFe‐metal–organic framework nanosheets (CoFe‐MOFNs), leading to a more than 4‐fold increase of current density at ?0.236 V (vs. RHE) for Au/CoFe‐MOFNs composite under light irradiation versus in dark. Mechanistic investigations reveal that the hydrogen evolution enhancement can be largely attributed to the injection of hot electrons from AuNRs to CoFe‐MOFNs, raising the Fermi level of CoFe‐MOFNs, facilitating the reduction of H2O and affording decreased activation energy for HER. This study highlights the superiority of plasmonic excitation on improving electrocatalytic efficiency of MOFs and provides a novel avenue towards the design of highly efficient water‐splitting systems under light irradiation.  相似文献   

2.
Ultrathin metal–organic framework (MOF) nanosheets (NSs) offer potential for many applications, but the synthetic strategies are largely limited to top‐down, low‐yield exfoliation methods. Herein, Ni–M–MOF (M=Fe, Al, Co, Mn, Zn, and Cd) NSs are reported with a thickness of only several atomic layers, prepared by a large‐scale, bottom‐up solvothermal method. The solvent mixture of N,N‐dimethylacetamide and water plays key role in controlling the formation of these two‐dimensional MOF NSs. The MOF NSs can be directly used as efficient electrocatalysts for the oxygen evolution reaction, in which the Ni–Fe–MOF NSs deliver a current density of 10 mA cm?2 at a low overpotential of 221 mV with a small Tafel slope of 56.0 mV dec?1, and exhibit excellent stability for at least 20 h without obvious activity decay. Density functional theory calculations on the energy barriers for OER occurring at different metal sites confirm that Fe is the active site for OER at Ni–Fe–MOF NSs.  相似文献   

3.
New mechanisms for the controlled growth of one‐dimensional (1D) metal–organic framework (MOF) nano‐ and superstructures under size‐confinement and surface‐directing effects have been discovered. Through applying interfacial synthesis templated by track‐etched polycarbonate (PCTE) membranes, congruent polycrystalline zeolitic imidazolate framework‐8 (ZIF‐8) solid nanorods and hollow nanotubes were found to form within 100 nm membrane pores, while single crystalline ZIF‐8 nanowires grew inside 30 nm pores, all of which possess large aspect ratios up to 60 and show preferential crystal orientation with the {100} planes aligned parallel to the long axis of the pore. Our findings provide a generalizable method for controlling size, morphology, and lattice orientation of MOF nanomaterials.  相似文献   

4.
Metal–organic framework (MOF) nanosheets could serve as ideal building blocks of molecular sieve membranes owing to their structural diversity and minimized mass‐transfer barrier. To date, discovery of appropriate MOF nanosheets and facile fabrication of high performance MOF nanosheet‐based membranes remain as great challenges. A modified soft‐physical exfoliation method was used to disintegrate a lamellar amphiprotic MOF into nanosheets with a high aspect ratio. Consequently sub‐10 nm‐thick ultrathin membranes were successfully prepared, and these demonstrated a remarkable H2/CO2 separation performance, with a separation factor of up to 166 and H2 permeance of up to 8×10−7 mol m−2 s−1 Pa−1 at elevated testing temperatures owing to a well‐defined size‐exclusion effect. This nanosheet‐based membrane holds great promise as the next generation of ultrapermeable gas separation membrane.  相似文献   

5.
Efficient adsorptive separation of propylene/propane (C3H6/C3H8) is highly desired and challenging. Known strategies focus on either the thermodynamic or the kinetic mechanism. Here, we report an interesting reactivity of a metal–organic framework that improves thermodynamic and kinetic adsorption selectivity simultaneously. When the metal–organic framework is heated under oxygen flow, half of the soft methylene bridges of the organic ligands are selectively oxidized to form the more polar and rigid carbonyl bridges. Mixture breakthrough experiments showed drastic increase of C3H6/C3H8 selectivity from 1.5 to 15. For comparison, the C3H6/C3H8 selectivities of the best‐performing metal–organic frameworks Co‐MOF‐74 and KAUST‐7 were experimentally determined to be 6.5 and 12, respectively. Gas adsorption isotherms/kinetics, single‐crystal X‐ray diffraction, and computational simulations revealed that the oxidation gives additional guest recognition sites, which improve thermodynamic selectivity, and reduces the framework flexibility, which generate kinetic selectivity.  相似文献   

6.
The effect of organic ligands on the separation performance of Zr based metal–organic framework (Zr‐MOF) membranes was investigated. A series of Zr‐MOF membranes with different ligand chemistry and functionality were synthesized by an in situ solvothermal method and a coordination modulation technique. The thin supported MOF layers (ca. 1 μm) showed the crystallographic orientation and pore structure of original MOF structures. The MOF membranes show excellent selectivity towards hydrogen owing to the molecular sieving effect when the bulkier linkers were used. The molecular simulation confirmed that the constricted pore apertures of the Zr‐MOFs which were formed by the additional benzene rings lead to the decrease in the diffusivity of larger penetrants while hydrogen was not remarkably affected. The gas mixture separation factors of the MOF membranes reached to H2/CO2=26, H2/N2=13, H2/CH4=11.  相似文献   

7.
Described here is a new and viable approach to achieve Pd catalysis for aerobic oxidation systems (AOSs) by circumventing problems associated with both the oxidation and the catalysis through an all‐in‐one strategy, employing a robust metal–organic framework (MOF). The rational assembly of a PdII catalyst, phenanthroline ligand, and CuII species (electron‐transfer mediator) into a MOF facilitates the fast regeneration of the PdII active species, through an enhanced electron transfer from in situ generated Pd0 to CuII, and then CuI to O2, trapped in the framework, thus leading to a 10 times higher turnover number than that of the homogeneous counterpart for Pd‐catalyzed desulfitative oxidative coupling reactions. Moreover, the MOF catalyst can be reused five times without losing activity. This work provides the first exploration of using a MOF as a promising platform for the development of Pd catalysis for AOSs with high efficiency, low catalyst loading, and reusability.  相似文献   

8.
To apply electrically nonconductive metal–organic frameworks (MOFs) in an electrocatalytic oxygen reduction reaction (ORR), we have developed a new method for fabricating various amounts of CuS nanoparticles (nano‐CuS) in/on a 3D Cu–MOF, [Cu3(BTC)2⋅(H2O)3] (BTC=1,3,5‐benzenetricarboxylate). As the amount of nano‐CuS increases in the composite, the electrical conductivity increases exponentially by up to circa 109‐fold, while porosity decreases, compared with that of the pristine Cu‐MOF. The composites, nano‐CuS(x wt %)@Cu‐BTC, exhibit significantly higher electrocatalytic ORR activities than Cu‐BTC or nano‐CuS in an alkaline solution. The onset potential, electron transfer number, and kinetic current density increase when the electrical conductivity of the material increases but decrease when the material has a poor porosity, which shows that the two factors should be finely tuned by the amount of nano‐CuS for ORR application. Of these materials, CuS(28 wt %)@Cu‐BTC exhibits the best activity, showing the onset potential of 0.91 V vs. RHE, quasi‐four‐electron transfer pathway, and a kinetic current density of 11.3 mA cm−2 at 0.55 V vs. RHE.  相似文献   

9.
Lanthanide metal–organic frameworks (Ln‐MOFs) have received much attention owing to their structural tunability and widely photofunctional applications. However, successful examples of Ln‐MOFs with well‐defined photonic performances at micro‐/nanometer size are still quite limited. Herein, self‐assemblies of 1,3,5‐benzenetricarboxylic acid (BTC) and lanthanide ions afford isostructural crystalline Ln‐MOFs. Tb‐BTC, Eu@Tb‐BTC, and Eu‐BTC have 1D microrod morphologies, high photoluminescence (PL) quantum yields, and different emission colors (green, orange, and red). Spatially PL resolved spectra confirm that Ln‐MOF microrods exhibit an optical waveguide effect with low waveguide loss coefficient (0.012≈0.033 dB μm−1) during propagation. Furthermore, these microrods feature both linear and chiral polarized photoemission with high anisotropy.  相似文献   

10.
Embedding cubane [M4(OH)4] (M=Ni, Co) clusters within the matrix of metal–organic frameworks (MOFs) is a strategy to develop materials with unprecedented synergistic properties. Herein, a new material type based on the pore‐space partition of the cubic primitive minimal‐surface net (MOF‐14‐type) has been realized. CTGU‐15 made from the [Ni4(OH)4] cluster not only has very high BET surface area (3537 m2 g?1), but also exhibits bi‐microporous features with well‐defined micropores at 0.86 nm and 1.51 nm. Furthermore, CTGU‐15 is stable even under high pH (0.1 m KOH), making it well suited for methanol oxidation in basic medium. The optimal hybrid catalyst KB&CTGU‐15 (1:2) made from ketjen black (KB) and CTGU‐15 exhibits an outstanding performance with a high mass specific peak current of 527 mA mg?1 and excellent peak current density (29.8 mA cm?2) at low potential (0.6 V). The isostructural cobalt structure (CTGU‐16) has also been synthesized, further expanding the application potential of this material type.  相似文献   

11.
Hollow nanostructures have attracted increasing research interest in electrochemical energy storage and conversion owing to their unique structural features. However, the synthesis of hollow nanostructured metal phosphides, especially nonspherical hollow nanostructures, is rarely reported. Herein, we develop a metal–organic framework (MOF)‐based strategy to synthesize carbon incorporated Ni–Co mixed metal phosphide nanoboxes (denoted as NiCoP/C). The oxygen evolution reaction (OER) is selected as a demonstration to investigate the electrochemical performance of the NiCoP/C nanoboxes. For comparison, Ni–Co layered double hydroxide (Ni–Co LDH) and Ni–Co mixed metal phosphide (denoted as NiCoP) nanoboxes have also been synthesized. Benefiting from their structural and compositional merits, the as‐synthesized NiCoP/C nanoboxes exhibit excellent electrocatalytic activity and long‐term stability for OER.  相似文献   

12.
Encapsulating a drug molecule into a water‐reactive metal–organic framework (MOF) leads to amorphous drug confined within the nanoscale pores. Rapid release of drug occurs upon hydrolytic decomposition of MOF in dissolution media. Application to improve dissolution and solubility for the hydrophobic small drug molecules curcumin, sulindac, and triamterene is demonstrated. The drug@MOF composites exhibit significantly enhanced dissolution and achieves high supersaturation in simulated gastric and/or phosphate buffer saline media. This combination strategy where MOF inhibits crystallization of the amorphous phase and then releases drug upon MOF irreversible structural collapse represents a novel and generalizable approach for drug delivery of poorly soluble compounds while overcoming the traditional weakness of amorphous drug delivery: physical instability of the amorphous form.  相似文献   

13.
14.
Layered two‐dimensional (2D) conjugated metal–organic frameworks (MOFs) represent a family of rising electrocatalysts for the oxygen reduction reaction (ORR), due to the controllable architectures, excellent electrical conductivity, and highly exposed well‐defined molecular active sites. Herein, we report a copper phthalocyanine based 2D conjugated MOF with square‐planar cobalt bis(dihydroxy) complexes (Co‐O4) as linkages (PcCu‐O8‐Co) and layer‐stacked structures prepared via solvothermal synthesis. PcCu‐O8‐Co 2D MOF mixed with carbon nanotubes exhibits excellent electrocatalytic ORR activity (E1/2=0.83 V vs. RHE, n=3.93, and jL=5.3 mA cm?2) in alkaline media, which is the record value among the reported intrinsic MOF electrocatalysts. Supported by in situ Raman spectro‐electrochemistry and theoretical modeling as well as contrast catalytic tests, we identified the cobalt nodes as ORR active sites. Furthermore, when employed as a cathode electrocatalyst for zinc–air batteries, PcCu‐O8‐Co delivers a maximum power density of 94 mW cm?2, outperforming the state‐of‐the‐art Pt/C electrocatalysts (78.3 mW cm?2).  相似文献   

15.
As a major greenhouse gas, methane, which is directly vented from the coal‐mine to the atmosphere, has not yet drawn sufficient attention. To address this problem, we report a methane nano‐trap that features oppositely adjacent open metal sites and dense alkyl groups in a metal–organic framework (MOF). The alkyl MOF‐based methane nano‐trap exhibits a record‐high methane uptake and CH4/N2 selectivity at 298 K and 1 bar. The methane molecules trapped within the alkyl MOF were crystalographically identified by single‐crystal X‐ray diffraction experiments, which in combination with molecular simulation studies unveiled the methane adsorption mechanism within the MOF‐based nano‐trap. The IAST calculations and the breakthrough experiments revealed that the alkyl MOF‐based methane nano‐trap is a new benchmark for CH4/N2 separation, thereby providing a new perspective for capturing methane from coal‐mine methane to recover fuel and reduce greenhouse gas emissions.  相似文献   

16.
The incompatibility between the anode and the cathode chemistry limits the used of Mg as an anode. This issue may be addressed by separating the anolyte and the catholyte with a membrane that only allows for Mg2+ transport. Mg‐MOF‐74 thin films were used as the separator for this purpose. It was shown to meet the needs of low‐resistance, selective Mg2+ transport. The uniform MOF thin films supported on Au substrate with thicknesses down to ca. 202 nm showed an intrinsic resistance as low as 6.4 Ω cm2, with the normalized room‐temperature ionic conductivity of ca. 3.17×10?6 S cm?1. When synthesized directly onto a porous anodized aluminum oxide (AAO) support, the resulting films were used as a standalone membrane to permit stable, low‐overpotential Mg striping and plating for over 100 cycles at a current density of 0.05 mA cm?2. The film was effective in blocking solvent molecules and counterions from crossing over for extended period of time.  相似文献   

17.
The crystalline sponge method (CSM) is primarily used for structural determination by single‐crystal X‐ray diffraction of a single analyte encapsulated inside a porous MOF. As the host–guest systems often show severe disorder, reliable crystallographic determination is demanding; thus the dynamics of the guest entering and the formation of nanoconfined molecular aggregates has not been in the spotlight. Now, the concept is investigated of the CSM for monitoring the structural evolution of nanoconfined supramolecular aggregates of eugenol guests with displacement of DMF inside the cavities of the flexible MOF, PUM168. The interpretation of the electron density provides a series of unique detailed snapshots depicting the supramolecular guest aggregation, thus showing the tight interplay between the host flexible skeleton and the molecular guests through the DMF‐to‐eugenol exchange process.  相似文献   

18.
Reported herein are two new polymorphic Co‐MOFs (CTGU‐5 and ‐6) that can be selectively crystallized into the pure 2D or 3D net using an anionic or neutral surfactant, respectively. Each polymorph contains a H2O molecule, but differs dramatically in its bonding to the framework, which in turn affects the crystal structure and electrocatalytic performance for hydrogen evolution reaction (HER). Both experimental and computational studies find that 2D CTGU‐5 which has coordinates water and more open access to the cobalt site has higher electrocatalytic activity than CTGU‐6 with the lattice water. The integration with co‐catalysts, such as acetylene black (AB) leads to a composite material, AB&CTGU‐5 (1:4) with very efficient HER catalytic properties among reported MOFs. It exhibits superior HER properties including a very positive onset potential of 18 mV, low Tafel slope of 45 mV dec−1, higher exchange current density of 8.6×10−4 A cm−2, and long‐term stability.  相似文献   

19.
Prolonged (weeks) UV/Vis irradiation under Ar of UiO‐66(Zr), UiO66 Zr‐NO2, MIL101 Fe, MIL125 Ti‐NH2, MIL101 Cr and MIL101 Cr(Pt) shows that these MOFs undergo photodecarboxylation of benzenedicarboxylate (BDC) linker in a significant percentage depending on the structure and composition of the material. Routine characterization techniques such as XRD, UV/Vis spectroscopy and TGA fail to detect changes in the material, although porosity and surface area change upon irradiation of powders. In contrast to BCD‐containing MOFs, zeolitic imidazolate ZIF‐8 does not evolve CO2 or any other gas upon irradiation.  相似文献   

20.
Microenvironments in enzymes play crucial roles in controlling the activities and selectivities of reaction centers. Herein we report the tuning of the catalytic microenvironments of metal–organic layers (MOLs), a two‐dimensional version of metal–organic frameworks (MOFs) with thickness down to a monolayer, to control product selectivities. By modifying the secondary building units (SBUs) of MOLs with monocarboxylic acids, such as gluconic acid, we changed the hydrophobicity/hydrophilicity around the active sites and fine‐tuned the selectivity in photocatalytic oxidation of tetrahydrofuran (THF) to exclusively afford butyrolactone (BTL), likely a result of prolonging the residence time of reaction intermediates in the hydrophilic microenvironment of catalytic centers. Our work highlights new opportunities in using functional MOLs as highly tunable and selective two‐dimensional catalytic materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号