首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The important role of pyrazine (pz) and its derivatives in fields such as biochemistry and pharmacology, as well as in the study of magnetic properties, is surveyed. Recognition of these properties without extensive investigations into their structural properties is not possible. This review summarizes interactions that exist between these organic compounds by themselves in the solid state, as well as those in coordination polymers with metal ions and in polyoxometalate‐based hybrids. Complexes based on pyrazine ligands can generate metal–organic framework (MOF) structures that bind polyoxometalates (POMs) through covalent and noncovalent interactions. Some biological and magnetic properties involving these compounds are considered and the effect of hydrogen bonding on their supramolecular architectures is highlighted.  相似文献   

2.
Supramolecular structures and metal‐complexes play a dominant role in the functionality of biomolecules. Taking nature as an example a major goal of metallo‐supramolecular chemistry is the extension of the traditional coordination chemistry towards supramolecular architectures, utilizing complex ligand systems. Herein we describe a wide range of different geometries such as helicates, linear rod‐like polymers, ladders, racks or grids, which are realized by the combination of supramolecular ligands and coordinating metal ions on the basis of self‐assembly and self‐recognition processes. Besides the pure beauty of the structures, the electro‐, photochemical and magnetic properties of the materials might open avenues to applications as smart coatings, catalysts or optical devices.  相似文献   

3.
《化学:亚洲杂志》2018,13(15):1962-1971
Recently, supramolecular hydrogels have attracted increasing interest owing to their tunable stability and inherent biocompatibility. However, only few studies have been reported in the literature on self‐healing supramolecular nucleoside hydrogels, compared to self‐healing polymer hydrogels. In this work, we successfully developed a self‐healing supramolecular nucleoside hydrogel obtained by simply mixing equimolar amounts of guanosine (G) and isoguanosine (isoG) in the presence of K+. The gelation properties have been studied systematically by comparing different alkali metal ions as well as mixtures with different ratios of G and isoG. To this end, rheological and phase diagram experiments demonstrated that the co‐gel not only possessed good self‐healing properties and short recovery time (only 20 seconds) but also could be formed at very low concentrations of K+. Furthermore, nuclear magnetic resonance (NMR), powder X‐ray diffraction (PXRD), and circular dichroism (CD) spectroscopy suggested that possible G2isoG2‐quartet structures occurred in this self‐healing supramolecular nucleoside hydrogel. This co‐gel, to some extent, addressed the problem of isoguanosine gels for the applications in vivo, which showed the potential to be a new type of drug delivery system for biomedical applications in the future.  相似文献   

4.
Luminescent metallo‐supramolecular polymers are a type of functional supramolecular architectures which integrates the advantages of emission, metal‐coordination, supramolecular chemistry as well as polymeric properties to realize advanced functions. Due to the abundant stimuli‐responsiveness of supramolecular assemblies and the light‐emitting properties, they have been widely applied as chemo‐sensors, light‐emitting devices, contrast agents for bio‐imaging, etc. In this review, we classify luminescent metallo‐supramolecular polymers based on the types of species (lanthanides, organometallic compounds, oligomer or polymer‐based ligands, small‐molecule‐based organic ligands) used to generate the luminescence and summarize recent developments of luminescent metallo‐supramolecular polymers. We mainly focus on the functions and applications of luminescent metallo‐supramolecular polymers and hope to give our reader a snapshot of research on luminescent metallo‐supramolecular polymers and encourage more scientists to devote into this promising area.  相似文献   

5.
Two rhomboidal metallacycles based on metal‐coordination‐driven self‐assembly are presented. Because metal‐coordination interactions restrict the rotation of phenyl groups on tetraphenylethene units, these metallacycles were emissive both in solution and in solid state, and their aggregation‐induced emission properties were well‐retained. Moreover, the rhomboidal metallacyclic structures offer a platform for intermolecular packing beneficial for the formation of liquid crystalline phases. Therefore, although neither of building blocks shows mesogenic properties, both thermotropic and lyotropic (in DMF) mesophases were observed in one of metallacycles, indicating that mesophases could be induced by metal‐coordination interactions. This study not only reveals the mechanism for the formation of cavity‐cored liquid crystals, but also provides a convenient approach to preparing supramolecular luminescent liquid crystals, which will serve as good candidates for chemo sensors and liquid crystal displays.  相似文献   

6.
Miniaturization of metal–biomolecule frameworks (MBioFs) to the nanometer scale represents a novel strategy for fabricating materials with tunable physical and chemical properties. Herein, we demonstrate a simple, low‐cost, and completely organic solvent‐free strategy for constructing a dl ‐glutamic acid–copper ion‐based three‐dimensional nanofibrous network structure. The building blocks used are available in large quantities and do not require any laborious synthesis or modification. Importantly, we demonstrate with an intriguing example, that the self‐assembly ability of supramolecular nanofibers could be finely tuned with the ligands’ chirality. This offers opportunities for obtaining one‐dimensional hierarchical nanostructures and expands the investigation scope of stereoselective self‐assembly. Furthermore, the material displays good ability in removing anionic dyes from water and inhibits the growth of both Gram positive and Gram negative bacteria, possibly through the contact‐killing mechanism; this indicates potential applications in environmental issues and antimicrobial nanotherapeutics.  相似文献   

7.
A straightforward methodology towards the supramolecular synthesis of novel organometallic polymers with attractive optical properties is presented. By coordinating bifunctional fluorescent cruciform molecules through ditopic metalated pincer complexes (Pd or Pt), we have synthesized a new class of well-defined coordination polymers that have controllable and tunable physical and photophysical properties. The formation of these new materials by employing metal coordination was monitored by (1)H NMR spectroscopy, the association strength of the metal-ligand interaction was measured by isothermal titration calorimetry, the solution polymeric properties were evaluated by viscometry, and the optical properties were measured and observed by fluorescence spectroscopy. The fast and quantitative synthesis of a wide range of prefabricated monomeric cruciform and metalated-pincer-complex components will allow for the rapid generation, growth, and optimization of this new class of functional polymers, which have potential electronic and optical applications.  相似文献   

8.
The cover picture shows the molecular modeling of a star‐shaped metallo‐supramolecular polymer and the schematic drawing of a linear analogue. These molecules are of great interest because of their unique properties. Metallo‐supramolecular polymers emerge by the well‐directed combination of polymers, the properties of which have dominated the development of materials in recent years, with supramolecular ligands, which have the ability to organize spontaneously and form unique structures on a molecular level, and transition‐metal ions, which, through their physical properties bring characteristic functionalities. The well‐known properties of the individual components allow the use of established methods, such as UV/Vis spectroscopy, NMR spectroscopy, and gel permeation chromatography for characterization. However, the combination also requires the application of new methods, such as analytical ultracentrifugation or MALDI‐TOF mass spectrometry. More about metallo‐supramolecular polymers based on bipyridine and terpyridine complexes can be found in the review by U. S. Schubert and C. Eschbaumer on p. 2892 ff.  相似文献   

9.
A new type of ligand, which is able to form axially chiral, supramolecular complexes was designed using DFT calculations. Two chiral monomers, each featuring a covalently bound chiral auxiliary, form a bidentate phosphine ligand with a twisted, hydrogen‐bonded backbone upon coordination to a transition metal center which results in two diastereomeric, tropos complexes. The ratio of the diastereomers in solution is very temperature‐ and solvent‐dependent. Rhodium and platinum complexes were analyzed through a combination of NMR studies, ESI‐MS measurements, as well as UV‐VIS and circular dichroism spectroscopy. The chiral self‐organized ligands were evaluated in the rhodium‐catalyzed asymmetric hydrogenation of α‐dehydrogenated amino acids and resulted in good conversion and high enantioselectivity. This research opens the way for new ligand designs based on stereocontrol of supramolecular assemblies through stereodirecting chiral centers.  相似文献   

10.
Transition‐metal–carbon (CTM) composites show ample activity in many catalytic reactions. However, control of composition, distribution, and properties is challenging. Now, a straightforward path for the synthesis of transition‐metal nanoparticles engulfed in crystalline carbon is presented with excellent control over the metal composition, amount, ratio, and catalytic properties. This approach uses molten monomers that coordinate metals ions at high temperature. At high temperatures, strong coordination bonds direct the growth of carbon material with homogeneous metals distribution and with negligible losses, owing to the liquid‐like reaction compared to the traditional solid‐state reaction. The strength of the approach is demonstrated by the synthesis of mono, binary, and trinary transition‐metal–crystalline‐carbon composites with tunable and precise elemental composition as well as good electrochemical properties as oxygen evolution reaction electrocatalysts.  相似文献   

11.
Biological function arises by the assembly of individual biomolecular modules into large aggregations or highly complex architectures. A similar strategy is adopted in supramolecular chemistry to assemble complex and highly ordered structures with advanced functions from simple components. Here we report a series of diamond‐like supramolecular frameworks featuring mesoporous cavities, which are assembled from metal‐imidazolate coordination cages and various anions. Small components (metal ions, amines, aldehydes, and anions) are assembled into the hierarchical complex structures through multiple interactions including covalent bonds, dative bonds, and weak C? H???X (X=O, F, and π) hydrogen bonds. The mesoporous cavities are large enough to trap organic dye molecules, coordination cages, and vitamin B12. The study is expected to inspire new types of crystalline supramolecular framework materials based on coordination motifs and inorganic ions.  相似文献   

12.
A supramolecular material containing quadruple hydrogen bonding sites was prepared by reacting the amines of methyl isocytosine and the epoxy groups of poly (ethylene glycol diglycidyl ether). This supramolecular polymer was complexed with metal salt, that is potassium iodide, to produce polymer electrolytes, and their physical properties, specific interactions, and conductivity behavior were investigated. The ionic conductivity of polymer electrolytes continuously increased with increasing salt concentration up to 0.4 of salt weight fraction, presenting usually high solubility limit of salt in the supramolecular polymer. Wide angle X‐ray scattering data also presented that the metal salt was completely dissolved in the supramolecular polymer up to 0.4 of salt weight fraction. Upon the introduction of metal salt, the mechanical properties of the supramolecular polymer were significantly enhanced by around 10 times and the glass transition temperature of the polymer increased by about 50 °C, as revealed by complex melt viscosities and differential scanning calorimetry. These unusual behaviors of salt solubility and mechanical properties for supramolecular polymer/metal salt complexes were attributed to the strong, additional metal ion coordination to hydrogen bonding sites as well as ether oxygens of polymer matrix, as supported by FTIR spectroscopy. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 3181–3188, 2007  相似文献   

13.
1,2,3‐Triazoles are unique heterocycles with intriguing physical properties that allow not only the coordination to metals, but also the establishment of supramolecular interactions based on their polarized C?H bonds. In this account, an extensive work of our group on the design and application of 1,2,3‐triazole catalysts is covered. Initially, a family of BINOL triazoles (Click‐BINOLs) was synthesized and employed in model test reactions in asymmetric metal catalysis such as the Ti‐catalyzed addition of alkylzinc reagents to aldehydes. The evolution from the Click‐BINOLs to a novel class of triazole‐based anion‐binding organocatalysts is further discussed. Consequently, these catalysts were successfully applied in alkylation reactions, as well as asymmetric dearomatizations of diverse N‐heteroarenes.  相似文献   

14.
Modern supramolecular chemistry is overwhelmingly based on non‐covalent interactions involving organic architectures. However, the question of what happens when you depart from this area to the supramolecular chemistry of structures based on non‐carbon frameworks remains largely unanswered, and is an area that potentially provides new directions in molecular activation, host–guest chemistry, and biomimetic chemistry. In this work, we explore the unusual host–guest chemistry of the pentameric macrocycle [{P(μ‐NtBu}2NH]5 with a range of anionic and neutral guests. The polar coordination site of this host promotes new modes of guest encapsulation via hydrogen bonding with the π systems of the unsaturated C≡C and C≡N bonds of acetylenes and nitriles as well as with the PCO? anion. Halide guests can be kinetically locked within the structure by oxidation of the phosphorus periphery by oxidation to PV. Our study underscores the future promise of p‐block macrocyclic chemistry.  相似文献   

15.
This Review covers design strategies, synthetic challenges, host–guest chemistry, and functional properties of interlocked supramolecular cages. Some dynamic covalent organic structures are discussed, as are selected examples of interpenetration in metal–organic frameworks, but the main focus is on discrete coordination architectures, that is, metal‐mediated dimers. Factors leading to interpenetration, such as geometry, flexibility and chemical makeup of the ligands, coordination environment, solvent effects, and selection of suitable counter anions and guest molecules, are discussed. In particular, banana‐shaped bis‐pyridyl ligands together with square‐planar metal cations have proven to be suitable building blocks for the construction of interpenetrated double‐cages obeying the formula [M4L8]. The peculiar topology of these double‐cages results in a linear arrangement of three mechanically coupled pockets. This allows for the implementation of interesting guest encapsulation effects such as allosteric binding and template‐controlled selectivity. In stimuli‐responsive systems, anionic triggers can toggle the binding of neutral guests or even induce complete structural conversions. The increasing structural and functional complexity in this class of self‐assembled hosts promises the construction of intelligent receptors, novel catalytic systems, and functional materials.  相似文献   

16.
Summary: The phase behavior of metallo‐supramolecular block copolymers with bulky counter ions is theoretically studied within the framework of a mean‐field dynamic density functional theory and compared with recent experiments on a polystyrene–poly(ethylene oxide) metallo‐supramolecular diblock copolymer, PS20‐[Ru]‐PEO70, with tetraphenylborate counter ions. The copolymer is modeled as a triblock polyelectrolyte, in which the metal complex is treated as the polyelectrolyte block. The topology and kinetics of the formation of the observed three‐domain lamellar morphology in which the polyelectrolyte blocks and bulky counter ions are located together to form electroneutral complexes, are in good agreement with experimental results. In addition, the model predicts the existence of core–shell morphologies. The agreement with and variations from the experimental phase diagram are discussed in detail.

Morphological transformations in a metallo‐supramolecular block copolymer with bulky counter ions upon increasing the temperature.  相似文献   


17.
Photocatalytic hydrogen production is crucial for solar‐to‐chemical conversion process, wherein high‐efficiency photocatalysts lie in the heart of this area. A photocatalyst of hierarchically mesoporous titanium phosphonate based metal–organic frameworks, featuring well‐structured spheres, a periodic mesostructure, and large secondary mesoporosity, are rationally designed with the complex of polyelectrolyte and cathodic surfactant serving as the template. The well‐structured hierarchical porosity and homogeneously incorporated phosphonate groups can favor the mass transfer and strong optical absorption during the photocatalytic reactions. Correspondingly, the titanium phosphonates exhibit significantly improved photocatalytic hydrogen evolution rate along with impressive stability. This work can provide more insights into designing advanced photocatalysts for energy conversion and render a tunable platform in photoelectrochemistry.  相似文献   

18.
We report supramolecular AB diblock copolymers comprised of well‐defined telechelic building blocks. Helical motifs, formed via reversible addition‐fragmentation chain‐transfer (RAFT) or anionic polymerization, are assembled with coil‐forming and sheet‐featuring blocks obtained via atom‐transfer radical polymerization (ATRP) or ring‐opening metathesis polymerization (ROMP). Interpolymer hydrogen bonding or metal‐coordination achieves dynamic diblock architectures featuring hybrid topologies of coils, helices, and/or π‐stacked sheets that, on a basic level, mimic protein structural motifs in fully synthetic systems. The intrinsic properties of each block (e.g., circular dichroism and fluorescence) remain unaffected in the wake of self‐assembly. This strategy to develop complex synthetic polymer scaffolds from functional building blocks is significant in a field striving to produce architectures reminiscent of biosynthesis, yet fully synthetic in nature. This is the first plug‐and‐play approach to fabricate hybrid π‐sheet/helix, π‐sheet/coil, and helix/coil architectures via directional self‐assembly.  相似文献   

19.
Multiple noncovalent interactions can drive self‐assembly through different pathways. Here, by coordination‐assisted changes in π‐stacking modes between chromophores in pyrene‐conjugated histidine (PyHis), a self‐assembly system with reversible and inversed switching of supramolecular chirality, as well as circularly polarized luminescence (CPL) is described. It was found that l ‐PyHis self‐assembled into nanofibers showing P‐chirality and right‐handed CPL. Upon ZnII coordination, the nanofibers changed into nanospheres with M‐chirality, as well as left‐handed CPL. The process is reversible and the M‐chirality can change to P‐chirality by removing the ZnII ions. Experimental and theoretical models unequivocally revealed that the cooperation of metal coordination and π‐stacking modes are responsible the reversible switching of supramolecular chirality. This work not only provides insight into how multiple noncovalent interactions regulate self‐assembly pathways.  相似文献   

20.
Ingenious approaches to supramolecular assembly for fabricating smart nanodevices is one of the more significant topics in nanomaterials research. Herein, by using surface quaternized cationic carbon dots (CDots) as the assembly and fluorescence platform, anionic sulfonatocalix[4]arene with modifiable lower and upper rims as a connector, as well as in situ coordination of Tb3+ ions, we propose an elaborate supramolecular assembly strategy for the facile fabrication of a multifunctional nanodevice. The dynamic equilibrium characteristics of the supramolecular interaction can eventually endow this nanodevice with functions of fluorescent ratiometric molecular recognition and as a nano‐logic gate with two output channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号