首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The successful synthesis of a threefold symmetric C78H36 molecule with 22 fused benzene rings is reported. This clover‐shaped nanographene was characterized on an ultrathin insulating film with atomic resolution by scanning probe microscopy.  相似文献   

2.
Incorporation of a non‐hexagonal ring into a nanographene framework can lead to new electronic properties. During the attempted synthesis of naphthalene‐bridged double [6]helicene and heptagon‐containing nanographene by the Scholl reaction, an unexpected azulene‐embedded nanographene and its triflyloxylated product were obtained, as confirmed by X‐ray crystallographic analysis and 2D NMR spectroscopy. A 5/7/7/5 ring‐fused substructure containing two formal azulene units is formed, but only one of them shows an azulene‐like electronic structure. The formation of this unique structure is explained by arenium ion mediated 1,2‐phenyl migration and a naphthalene to azulene rearrangement reaction according to an in‐silico study. This report represents the first experimental example of the thermodynamically unfavorable naphthalene to azulene rearrangement and may lead to new azulene‐based molecular materials.  相似文献   

3.
A rigid, inherently chiral bilayer nanographene has been synthesized as both the racemate and enantioenriched M isomer (with 93 % ee) in three steps from established helicenes. This folded nanographene is composed of two hexa‐peri‐hexabenzocoronene layers fused to a [10]helicene, with an interlayer distance of 3.6 Å as determined by X‐ray crystallography. The rigidity of the helicene linker forces the layers to adopt a nearly aligned AA‐stacked conformation, rarely observed in few‐layer graphene. By combining the advantages of nanographenes and helicenes, we have constructed a bilayer system of 30 fused benzene rings that is also chiral, rigid, and remains soluble in common organic solvents. We present this as a molecular model system of bilayer graphene, with properties of interest in a variety of potential applications.  相似文献   

4.
A new family of distorted ribbon‐shaped nanographenes was designed, synthesized, and their optical and electrochemical properties were evaluated, pointing out an unprecedented correlation between their structural characteristics and the two‐photon absorption (TPA) responses and electrochemical band gaps. Three nanographene ribbons have been prepared: a seven‐membered‐ring‐containing nanographene presenting a tropone moiety at the edge, its full‐carbon analogue, and a purely hexagonal one. We have found that the TPA cross‐sections and the electrochemical band gaps of the seven‐membered‐ring‐containing compounds are higher and lower, respectively, than those of the fully hexagonal polycyclic aromatic hydrocarbon (PAH). Interestingly, the inclusion of additional curvature has a positive effect in terms of non‐linear optical properties of those ribbons.  相似文献   

5.
The precision synthesis of helical bilayer nanographenes (NGs) with new topology is of substantial interest because of their exotic physicochemical properties. However, helical bilayer NGs bearing non-hexagonal rings remain synthetically challenging. Here we present the efficient synthesis of the first helical bilayer nonbenzenoid nanographene ( HBNG1 ) from a tailor-made azulene-embedded precursor, which contains a novel [10]helicene backbone with two embedded heptagons. Single-crystal X-ray analysis reveals its highly twisted bilayer geometry with a record small interlayer distance of 3.2 Å among the reported helical bilayer NGs. Notably, the close interlayer distance between the two layers offers intramolecular through-space conjugation as revealed by in situ spectroelectrochemistry studies together with DFT simulations. Furthermore, the chiroptical properties of the P/M enantiomers of HBNG1 are also evaluated by circular dichroism and circularly polarized luminescence.  相似文献   

6.
An S‐shaped double helicene‐like molecule (>99 % ee), possessing stable helical chirality, has been synthesized by the rhodium(I)/difluorphos complex‐catalyzed highly diastereo‐ and enantioselective intramolecular double [2+2+2] cycloaddition of a 2‐naphthol‐ and benzene‐linked hexayne. The collision between two terminal naphthalene rings destabilizes the helical chirality of the S‐shaped double helicene‐like molecule, but the introduction of two additional fused benzene rings significantly increases the configurational stability. Thus, no epimerization and racemization were observed even at 100 °C. The enantiopure S‐shaped double helicene‐like molecule forms a trimer through the multiple C?H???π and C?H???O interactions in the solid‐state. The trimers stack to form columnar packing structures, in which neighboring stacks have opposite dipole directions. The accumulation of helical structures in the same direction in the S‐shaped double helicene‐like molecule enhanced the chiroptical properties.  相似文献   

7.
Chiral shape-persistent molecular nanocarbons are promising chiroptical materials; their synthesis, however, remains a big challenge. Herein, we report the facile synthesis and chiral resolution of a double-stranded figure-eight carbon nanobelt 1 in which two [5]helicene units are fused together. Two synthetic routes were developed, and, in particular, a strategy involving Suzuki coupling-mediated macrocyclization followed by Bi(OTf)3-catalyzed cyclization of vinyl ether turned out to be the most efficient. The structure of 1 was confirmed by X-ray crystallographic analysis. The isolated (P,P)- and (M,M)- enantiomers show persistent chiroptical properties with relatively large dissymmetric factors (|gabs|=5.4×10−3 and |glum|=1.0×10−2), which can be explained by the effective electron delocalization along the fully conjugated belt and the unique D2 symmetry. 1 exhibits local aromatic character with a dominant structure containing eight Clar's aromatic sextet rings.  相似文献   

8.
A series of tris‐aryl phosphane oxides existing as residual enantiomers or diastereoisomers with substituents on the aryl rings differing in size and electronic properties were synthesized and characterized. Their electronic properties were evaluated on the basis of their electrochemical oxidation and reduction potentials together with those of the corresponding “blade bromides” (i.e., the naphthalene derivatives displaying the same substitution pattern of the tris‐naphthyl phosphane oxide blades, with a bromo substituent where the phosphorus atom is located) determined by CV. The residual stereoisomeric phosphane oxides were isolated in a stereochemically pure state and were found to be highly configurationally stable at room temperature (stereoisomerization barriers of about 27 kcal mol?1). The chiroptical properties of the residual stereoisomers and the assignments of absolute configuration are discussed. The configurational stability of residual tris‐aryl phosphane oxides was found to be scarcely influenced by the electronic properties of the substituents present on the aromatic rings constituting the blades, while steric effects play the most relevant role. Detailed theoretical calculations are in agreement with the experimental results and also contribute to a rational interpretation of the stereodynamics of these systems.  相似文献   

9.
In this contribution, aminocyclobutanes, as well as eight‐membered enamide rings, have been made from N‐vinyl β‐lactams. The eight‐membered products have been formed by a [3,3]‐sigmatropic rearrangement, whereas the aminocyclobutanes have been derived from a domino [3,3]‐rearrangement/6π‐electrocyclisation process. The aminocyclobutanes have been obtained in a highly diastereoselective fashion. The cyclobutane ring system tolerates fusion even if adjacent quaternary centres are present. Systems containing up to four fused rings are readily accessible. The reaction profile has been investigated by using Gaussian 03. This study suggests that two reaction pathways for aminocyclobutane formation are possible. In one pathway the [3,3]‐sigmatropic rearrangement is the rate‐limiting step and in the second pathway the electrocyclisation is rate limiting. Taken together, these reactions should facilitate the construction of fused heterocycles.  相似文献   

10.
This study presents a new type of negatively curved nanographene (C86H32) that contains an unprecedented pattern of heptagons. A tert‐butylated derivative of C86H32 was successfully synthesized using tetrabenzodipleiadiene as a key building block. This synthesis involved a ring expansion reaction as a key step to form the seven‐membered rings in the framework of tetrabenzodipleiadiene. The single‐crystal structure reveals a saddle‐shaped molecule with a highly bent naphthalene moiety at the center of the polycyclic backbone. As found from the DFT calculations, this aromatic saddle is flexible at room temperature and has a saddle‐shaped geometry as the dominant conformation. The DFT calculations along with experimental results show that the attachment of t‐butyl groups to the central tetrabenzodipleiadiene moiety of nanographene C86H32 can stabilize the saddle conformation and make this nanographene less flexible.  相似文献   

11.
The enantioselective synthesis of an aza[10]helicene, possessing two pyridone units, has been achieved by the gold‐catalyzed intramolecular quadruple hydroarylation of a tetrayne. This aza[10]helicene was successfully converted into a fully aromatic aza[10]helicene, possessing two pyridine units. Structure–photophysical and chiroptical properties relationship in a series of azahelicene isomers has also been disclosed.  相似文献   

12.
Three thiadiazoloquinoxaline‐containing long pyrene‐fused N‐heteroacenes with 8, 13, and 18 rings were designed and synthesized. They show high electron affinities (EAs) of approximately 4.1 eV, which were derived from the onset of the reduction peaks in cyclic voltammetry. Crystal structure analysis revealed in‐plane extension through close contacts between thiadiazole units as well as layered packing, enabling in‐plane and interlayer electron transport. Organic field‐effect transistor devices provided electron mobilities, which suggest a potential way to enhance the charge transport in long N‐heteroacenes.  相似文献   

13.
An original strategy to construct a new donor–acceptor (D–A)‐integrated structure by directly imposing “pull” unit on the “push” moiety to form fused ring architecture has been developed, and poly{N‐alkyl‐carbazole[3,4‐c:5,6‐c]bis[1,2,5]thiadiazole‐alt‐thiophene} (PCBTT) with D–A‐integrated structure, in which two 1,2,5‐thiadiazole rings are fixed on carbazole in 3‐, 4‐ and 5‐, 6‐position symmetrically and thiophene is used as bridge, has been synthesized. The interaction between pull and push units has fine tuned the HOMO/LUMO energy levels, and the resulting copolymer covers the solar flux from 300 to 750 nm. The interaction between pull and push units is worth noting that due to the fused five rings inducing strong intermolecular interaction, an extremely short π–π stacking distance of 0.32 nm has been achieved for PCBTT both in powder and solid states. This is the shortest π–π stacking distance reported for conjugated polymers. Additionally, an obvious intramolecular charge transfer and energy transfer from donor units to acceptor units have been detected in this D–A integration. A moderate‐to‐high open‐circuit voltage of ~0.7 V in PCBTT:[6,6]‐phenyl‐C61 butyric acid methyl ester (PCBM) (w/w = 1/2) solar cells is achieved due to the low‐lying HOMO energy level of PCBTT. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

14.
Polycyclic aromatic hydrocarbons consisting of three fused anthracene units were designed as new π‐conjugated compounds having helical structures. These expanded helicenes were synthesized by Pt‐catalyzed cycloisomerization of the corresponding ethynyl‐substituted precursors. The nonplanar and helical structure was confirmed by X‐ray analysis and DFT calculations, and the barrier to helical inversion was estimated to be 34 kJ mol?1. The enantiomers of the diphenyl derivative were successfully resolved by chiral HPLC. Enantiopure samples showed good chiroptical performance in the CD (|Δ?| 1380 L mol?1 cm?1) and CPL (|glum| 0.013) spectra, and these values were considerably large for simple organic molecules. The unique chiroptical properties are discussed on the basis of the molecular structure and the electronic state with the aid of time‐dependent DFT calculations.  相似文献   

15.
Herein, we report the one‐pot synthesis of an electron‐poor nanographene containing dicarboximide groups at the corners. We efficiently combined palladium‐catalyzed Suzuki–Miyaura cross‐coupling and dehydrohalogenation to synthesize an extended two‐dimensional π‐scaffold of defined size in a single chemical operation starting from N‐(2,6‐diisopropylphenyl)‐4,5‐dibromo‐1,8‐naphthalimide and a tetrasubstituted pyrene boronic acid ester as readily accessible starting materials. The reaction of these precursors under the conditions commonly used for Suzuki–Miyaura cross‐coupling afforded a C64 nanographene through the formation of ten C?C bonds in a one‐pot process. Single‐crystal X‐ray analysis unequivocally confirmed the structure of this unique extended aromatic molecule with a planar geometry. The optical and electrochemical properties of this largest ever synthesized planar electron‐poor nanographene skeleton were also analyzed.  相似文献   

16.
Two diastereoisomeric N‐doped nanographene derivatives have been efficiently prepared in two synthetic steps starting from an ethynylated hexaazatriphenylene building block. The first derivative adopts a D3‐symmetrical propeller‐shaped structure with three equivalent nanographene foils. The structure of the second diastereoisomer is C2‐symmetrical and differs from the first one by the way two peripheral nanographene foils overlap. Owing to their intertwined structures, the two N‐doped nanographenes are soluble in organic solvents and could be characterized by a combination of several analytical tools. Resolution of the D3‐symmetrical derivative has been achieved and CD measurements revealed extremely strong Cotton effects.  相似文献   

17.
Two diastereoisomeric N‐doped nanographene derivatives have been efficiently prepared in two synthetic steps starting from an ethynylated hexaazatriphenylene building block. The first derivative adopts a D3‐symmetrical propeller‐shaped structure with three equivalent nanographene foils. The structure of the second diastereoisomer is C2‐symmetrical and differs from the first one by the way two peripheral nanographene foils overlap. Owing to their intertwined structures, the two N‐doped nanographenes are soluble in organic solvents and could be characterized by a combination of several analytical tools. Resolution of the D3‐symmetrical derivative has been achieved and CD measurements revealed extremely strong Cotton effects.  相似文献   

18.
A novel amphiphilic dendron ( AZOC8GAc ) with three l ‐glutamic acid units and an azobenzene moiety covalently linked by an alkyl spacer has been designed. The compound formed hydrogels with water at very low concentration and self‐assembled into chiral‐twist structures. The gel showed a reversible macroscopic volume phase transition in response to pH variations and photo‐irradiation. During the photo‐triggered changes, although the gel showed complete reversibility in its optical absorptions, only an incomplete chiroptical property change was achieved. On the other hand, the dendron could form a 1:1 inclusion complex through a host–guest interaction with α‐cyclodextrin (α‐CD), designated as supra‐dendron gelator AZOC8GAc/α‐CD . The supra‐dendron showed similar gelation behavior to that of AZOC8GAc , but with enhanced photoisomerization‐transition efficiency and chiroptical switching capacity, which was completely reversible in terms of both optical and chiroptical performances. The self‐assembly of the supra‐dendron is a hierarchical or multi‐supramolecular self‐assembling process. This work has clearly illustrated that the hierarchical and multi‐supramolecular self‐assembling system endows the supramolecular nanostructures or materials with superior reversible optical and chiroptical switching.  相似文献   

19.
Short α‐peptides with less than 10 residues generally display a low propensity to nucleate stable helical conformations. While various strategies to stabilize peptide helices have been previously reported, the ability of non‐peptide helical foldamers to stabilize α‐helices when fused to short α‐peptide segments has not been investigated. Towards this end, structural investigations into a series of chimeric oligomers obtained by joining aliphatic oligoureas to the C‐ or N‐termini of α‐peptides are described. All chimeras were found to be fully helical, with as few as 2 (or 3) urea units sufficient to propagate an α‐helical conformation in the fused peptide segment. The remarkable compatibility of α‐peptides with oligoureas described here, along with the simplicity of the approach, highlights the potential of interfacing natural and non‐peptide backbones as a means to further control the behavior of α‐peptides.  相似文献   

20.
3β,6β‐Di­hydroxy­olean‐12‐en‐27‐oic acid, C30H48O4, a cytotoxic and apoptosis‐inducing oleanane triterpenoid, which was isolated from the rhizome of Astilbe chinensis, consists of a linear array of five fused six‐membered rings. The central ring has a slightly distorted half‐chair conformation, while the four outer rings adopt chair conformations. Two hydroxy groups and one carboxy group serve simultaneously as hydrogen‐bond donors and acceptors, forming molecular chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号