首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sunscreen agents and in particular UV filters are compounds added in different cosmetic formulations, that has the function of preventing damage caused by sun exposition. Therefore, this paper proposes the development of a simple, fast and reliable electroanalytical method utilizing square wave voltammetry (SWV) to the determination of Benzophenone‐3 (BZ‐3), camphor 4‐methylbenzylidene (MBC) and 2‐ethylhexyl‐4‐methoxycinnamate (OMC) in cosmetic samples. The electrochemical system consisted of a cell with three electrodes: work – gold electrode modified, reference – Ag/AgCl(sat) and auxiliary – platinum, using as supporting electrolyte 4.0 mL of Britton Robinson Buffer 0.04 mol L?1 (pH=4.0), 1.0 mL of methanol and 5.50×10?4 mol L?1 of cetyltrimethylammonium bromide (CTAB). The method was validated using three commercial sunscreen samples and the results showed recovery values between 83 and 98 %. The average values found for the analysed samples were 3.49 % m/m (728 mg L?1) to BZ‐3, 0.56 % m/m (113 mg L?1) to MBC and 0.99 % m/m (208 mg L?1) to OMC. The detection (DL) and quantification (QL) limits were 0.47 mg L?1 and 1.56 mg L?1 to BZ‐3, 0.77 mg L?1 and 2.58 mg L?1 to MBC and 0.78 mg L?1 and 2.59 mg L?1 to OMC, respectively. The sunscreen protector samples were also evaluated by high‐performance liquid chromatography (HPLC) demonstrating a good correlation between the results and compared the results with allowed concentration.  相似文献   

2.
A luminescent conjugated microporous polymer (BCMP‐3) has been synthesized in high yield by a carbon–carbon coupling reaction using triarylboron as a building unit. BCMP‐3 was fully characterized by using powder X‐ray diffraction analysis, Fourier transform infrared spectroscopy, 13C solid‐state NMR spectroscopy, field emission scanning electron microscopy, thermogravimetric analysis, and nitrogen and carbon dioxide adsorption. The new three‐dimensional conjugated framework possess a high Brunauer–Emmett–Teller (BET) specific surface area up to 950 m2 g?1 with a pore volume of 0.768 cm3 g?1, good stability, and abundant boron sites in the skeleton. Under excited‐light irradiation, BCMP‐3 exhibits strong fluorescent emission at 488 nm with a high absolute quantum yield of 18 % in the solid state. Polymer BCMP‐3 acts as a colorimetric and fluorescent chemosensor with high sensitivity and selectivity for F? over other common anions. In addition, the polymer also works as an adsorbent for F? removal and shows good adsorption capacities of up to 24 mg g?1 at equilibrium F? concentrations of 16 mg L?1 and a temperature of 298 K. The adsorption kinetics and isotherm were analyzed by fitting experimental data with pseudo‐second‐order kinetics and Langmuir equations. Furthermore, we highlight that BCMP‐3 is an adsorbent for fluoride removal that can be efficiently reused many times without loss of adsorption efficiency.  相似文献   

3.
The electrochemical reduction of three common insecticides such as cypermethrin (CYP), deltamethrin (DEL) and fenvalerate (FEN) was investigated at glassy carbon electrode (GCE), multiwalled carbon nanotubes modified GCE (MWCNT‐GCE), polyaniline (herein called as modifier M1) and polypyrrole (herein called as modifier M2) deposited MWCNT/GCE using cyclic voltammetry. Influences of pH, scan rate, and concentration were studied. The surface morphology of the modified film was characterized by scanning electron microscopy (SEM) and X‐ray diffraction analysis (XRD). A systematic study of the experimental parameters that affect differential pulse stripping voltammetry (DPSV) was carried out and the optimized experimental conditions were arrived at. The calibration plots were linear over the insecticide's concentration range 0.1–100 mg L?1 and 0.05–100 mg L?1 for all the three insecticides at MWCNT‐GCE and MWCNT(M1)‐GCE respectively. The MWCNT(M2)‐GCE performed well among the three electrode systems and the determination range obtained was 0.01–100 mg L?1 for CYP, DEL and FEN. The limit of detection (LOD) was 0.35 μg L?1, 0.9 μg L?1 and 0.1 μg L?1 for CYP, DEL and FEN respectively on MWCNT(M2)‐GCE modified system. Suitability of this method for the trace determination of insecticide in spiked soil sample was also determined.  相似文献   

4.
Poly(vinyl chloride)‐based membranes of salen ligands, 2‐((E)‐((1R,2S)‐2‐((E)‐5‐tert‐butyl‐2‐hydroxybenzylideneamino)cyclohexylimino)methyl)‐4‐tert‐butyl phenol (S1) and 2‐((E)‐((1R,2S)‐2‐((E)‐3,5‐di‐tert‐butyl‐2‐hydroxybenzylideneamino)cyclohexylimino)methyl)‐4,6‐di‐tert‐butylphenol (S2) were fabricated and explored as cobalt(II) selective electrodes. The performance of the polymeric membrane electrode (PME) and coated graphite electrode (CGE) were compared and it was observed that CGE showed a wide working concentration range of 1.1×10?8 to 1.0×10?1 mol L?1 with a limit of detection of 7.0×10?9 mol L?1 exhibiting the Nernstian slope 29.6 mV/decade of activity in the pH range 3.0–9.0. It was used for the determination of cobalt(II) ions in water, soil, beer, pharmaceutical samples and medicinal plants and would be used as an indicator electrode in potentiometric titration with EDTA.  相似文献   

5.
An innovative technique to obtain high‐surface‐area mesostructured carbon (2545 m2 g?1) with significant microporosity uses Teflon as the silica template removal agent. This method not only shortens synthesis time by combining silica removal and carbonization in a single step, but also assists in ultrafast removal of the template (in 10 min) with complete elimination of toxic HF usage. The obtained carbon material (JNC‐1) displays excellent CO2 capture ability (ca. 26.2 wt % at 0 °C under 0.88 bar CO2 pressure), which is twice that of CMK‐3 obtained by the HF etching method (13.0 wt %). JNC‐1 demonstrated higher H2 adsorption capacity (2.8 wt %) compared to CMK‐3 (1.2 wt %) at ?196 °C under 1.0 bar H2 pressure. The bimodal pore architecture of JNC‐1 led to superior supercapacitor performance, with a specific capacitance of 292 F g?1 and 182 F g?1 at a drain rate of 1 A g?1 and 50 A g?1, respectively, in 1 m H2SO4 compared to CMK‐3 and activated carbon.  相似文献   

6.
Xe is only produced by cryogenic distillation of air, and its availability is limited by the extremely low abundance. Therefore, Xe recovery after usage is the only way to guarantee sufficient supply and broad application. Herein we demonstrate DD3R zeolite as a benchmark membrane material for CO2/Xe separation. The CO2 permeance after an optimized membrane synthesis is one order magnitude higher than for conventional membranes and is less susceptible to water vapour. The overall membrane performance is dominated by diffusivity selectivity of CO2 over Xe in DD3R zeolite membranes, whereby rigidity of the zeolite structure plays a key role. For relevant anaesthetic composition (<5 % CO2) and condition (humid), CO2 permeance and CO2/Xe selectivity stabilized at 2.0×10?8 mol m?2 s?1 Pa?1 and 67, respectively, during long‐term operation (>320 h). This endows DD3R zeolite membranes great potential for on‐stream CO2 removal from the Xe‐based closed‐circuit anesthesia system. The large cost reduction of up to 4 orders of magnitude by membrane Xe‐recycling (>99+%) allows the use of the precious Xe as anaesthetics gas a viable general option in surgery.  相似文献   

7.
This work reports the determination of 5 neonicotinoid pesticides (Clothianidin, Imidacloprid, Thiamethoxam, Nitenpyram and Dinotefuran) in water samples by cathodic differential pulse (DP) voltammetry at screen‐printed disposable sensors featuring a sputtered bismuth thick‐film working electrode, a Ag reference electrode and a carbon counter electrode. The performance of the bismuth thick‐film electrodes was compared to that of a home‐made bismuth thin‐film electrode and a bismuth‐bulk electrode. The electrodes were further characterized by electrochemical and optical techniques. The effect of the pH of the supporting electrolyte on the DP reduction currents of the 5 pesticides was studied. The limits of quantification (LOQs) in 4 water matrices (distilled water, tap water, mineral water and surface water) were in the range 0.76 to 2.10 mg L?1 but severe matrix effects were observed in the analysis of mineral and, especially, surface water samples. Using a solid‐phase extraction (SPE) procedure using Lichrolut EN cartridges and elution with methanol, the matrix effects were substantially reduced and the LOQs were in the range 9 to 17 µg L?1. The recoveries of surface water samples spiked with the 5 target neonicotinoids at two concentration levels (20 and 50 µg L?1) were in the range 89 to 109 % and the % relative standard deviations ranged from 4.3 to 7.2 %.  相似文献   

8.
Covalent organic frameworks (COFs) are attractive candidates for advanced water‐treatment membranes owing to their high porosity and well‐organized channel structures. Herein, the continuous two‐dimensional imine‐linked COF‐LZU1 membrane with a thickness of only 400 nm was prepared on alumina tubes by in situ solvothermal synthesis. The membrane shows excellent water permeance (ca. 760 L m?2 h?1 MPa?1) and favorable rejection rates exceeding 90 % for water‐soluble dyes larger than 1.2 nm. The water permeance through the COF‐LZU1 membrane is much higher than that of most membranes with similar rejection rates. Long‐time operation demonstrates the outstanding stability of the COF‐LZU1 membrane. As the membrane has no selectivity for hydrated salt ions (selectivity <12 %), it is also suitable for the purification of dye products from saline solutions. The excellent performance and the outstanding water stability render the COF‐LZU1 membrane an interesting system for water purification.  相似文献   

9.
The two podand chelates based on diethylsulfide, 1,5‐bis(2′‐hydroxy‐4′‐nitrophenoxy)‐3‐thiapentane (L1) and 1,5‐bis(8′‐oxybenzopyridine)‐3‐thia pentane (L2), have been synthesized and explored as neutral ionophores for preparing poly(vinyl chloride) based membrane electrodes selective to Pb2+. The addition of anionic additives and various plasticizers has been found to substantially improve the performance of the electrode. The best performance was obtained with the electrode No. 1 having a membrane of ionophore (L1) with the composition PVC:o‐NPOE:ionophore (L1):NaTFPB (%w/w) of 33 : 62 : 3 : 2. The electrode exhibits Nernstian response with a slope of 31.57±0.3 mV decade?1 of activity in the concentration range from 2.0×10?9 to 1.0×10?1 M Pb2+, performs satisfactorily over a wide pH range (1.6–7.0), with a fast response time (5 s).  相似文献   

10.
In this work, the new polyamine bisnaphthalimidopropyl‐4,4’‐diaminodiphenylmethane is proposed as a new ionophore for perchlorate potentiometric sensors. The optimal formulation for the membrane comprised of 12 mmol kg?1 of the ionophore, and 68 % (w/w) of 2‐nitrophenyl phenyl ether as plasticizer and 31 % (w/w) of high molecular weight PVC. The sensors were soaked in water for a week to allow leakage of anionic impurities and for one day in a perchlorate solution (10?4 mol L?1) to improve reproducibility due to its first usage. The stability constant for the ionophore‐perchlorate association in the membrane, log βIL1=3.18±0.04, ensured a performance characterized by the slope of 54.1 (±0.7) mV dec?1 to perchlorate solutions with concentrations between 1.24×10?7 and 1.00×10?3 mol L?1. The sensors are insensitive to pH between 3.5 to 11.0, they have a practical detection limit of 7.66 (±0.42) ×10?8 mol L?1 and a response time below 60 s for solutions with perchlorate concentrations above 5×10?6 mol L?1. The accuracy of the results was confirmed by the analysis of the contaminant in a certified reference water sample.  相似文献   

11.
In this work, an novel electrochemical‐chemical‐chemical (ECC) redox cycle was designed in an enzyme‐based sensor for acquiring additional signal amplification. The tyrosinase (Tyr) was entrapped in a sulfonated polyaniline?chitosan (SPAN?CS) composite which was used as a redox capacitor on a glass carbon electrode. Firstly, the substrate, phenol was catalyzed to catechol and further catalyzed to o‐benzoquinone by Tyr. Next, in the presence of Ru(NH3)6Cl2, the reduced state of SPAN(SPANred) was reacted with o‐benzoquinone to form it's oxidized state (SPANox) and catechol, then SPANox was reduced back to SPANred by Ru(II) in the solution. Finally, the amplified anodic current of catechol was obtained on electrode through above ECC redox cycle system. In addition, the ECC redox cycling led to a high signal‐to‐background ratio. The voltammetric response showed excellent analytical performance to phenol over two linear range of 3.5 to 200.0 nmol L?1 and 200.0 to 2000.0 nmol L?1 with a high sensitivity of 2204 μA mM?1. The detection limit was obtained to be 0.8 nmol L?1 (S/N=3). Furthermore, the proposed approach exhibited good repeatability, stability and specificity, and could offer practicality in the detection of phenol in tap water.  相似文献   

12.
Two novel potentiometric polymeric membrane sensors for rapid and accurate determination of thorium are described. These are based on the use of trioctylphosphine oxide (TOPO) and thorium toluate (Th‐TA) as ionophores dispersed in poly(vinyl chloride) matrix membranes plasticized with nitrophenyloctyl ether. In strong nitric acid medium, Th(IV) nitrate is converted into [Th(NO3)6]2? complex and sensed as anionic divalent ion which exclude most cationic effect. Validation of the assay methods using the quality assurance standards (linearity range, accuracy, precision, within‐day variability, between‐day‐repeatability, lower detection limit and sensitivity) reveals excellent performance characteristics of both sensors. The sensors exhibit near‐Nernstian response for 1.0×10?6–1.0×10?1 M Th over the pH range 2.5–4.5. Calibration slopes of ?32.3±0.3 and ?27.2±0.2 mV/decade, precision of ±0.5 and ±0.8% and accuracy of 98.8±0.9 and 97.9±0.7% are obtained with TOPO and Th‐TA based sensors, respectively. Negligible interferences are caused by most interfering mono‐, di‐, tri‐, tetra‐, penta‐, and hexa‐valent elements commonly associated with thorium in naturally occurring minerals and ores. High concentrations of Cl?, F?, SO42?, and NO3? ions have no diverse effect. Complete removal of the effect of the interferents in complex matrices is achieved by retention of [Th(NO3)6]2? complex from 5 M nitric acid/methanol mixture (1 : 9 v/v) on a strong anion exchanger, washing out the cationic interferents followed by stripping off thorium anion complex and measurements. Both sensors are used for determining thorium in certified thorium ore samples (20–120 mg Th/kg) and some naturally occurring ores (200–600 mg Th/kg). The results obtained agree fairly well with the certified labeled values or the data obtained using X‐ray fluorescence spectrometry  相似文献   

13.
《Electroanalysis》2005,17(21):1945-1951
Tin(IV) porphyrins derivatives were used as ionophores for phthalate selective electrodes preparation. The influence of ionophore structure and membrane composition (amount of incorporated ionic sites) on the electrode response, selectivity and long‐term stability were studied. Poly(vinyl chloride) polymeric membranes plasticized with o‐NPOE (o‐nitrophenyloctylether) and containing Sn(IV)‐tetraphenylporphyrin (TPP) dichloride (Sn(IV)[TPP]Cl2) or Sn(IV)‐octaethylporphyrin (OEP) dichloride (Sn(IV)[OEP]Cl2), and in some cases incorporating lipophilic cationic (tetraocthylammonium bromide ‐ TOABr) and anionic (sodium tetraphenylborate – NaTPB and potassium tetrakis[3,5‐bis(trifluoromethyl)phenyl]borate‐KTFPB) additives, were prepared and their potentiometric characteristics compared. Both ionophores are shown to operate via a neutral mechanism, and the addition of 10 mol % of lipophilic quaternary ammonium salt derivative to the membrane is required to achieve optimal electrode performance. The potentiometric units prepared, with Sn(IV)[TPP]Cl2 (Type A) or Sn(IV)[OEP]Cl2 (Type B) without additives, presented a slope of ?52.8 mV dec?1 and ?58.8 mV dec?1 and LLLR of 9.9×10?5 mol L?1 and 9.9×10?6 mol L?1, respectively. The units prepared using the same metalloporphyrins and incorporating 10% mol TOABr presented a slope of ?55.0 mV dec?1 and ?57.8 mV dec?1 and LLLR of 5.0×10?7 mol L?1 and 3.0×10?7 mol L?1. Their analytical usefulness was assessed by potentiometric determinations of phthalate in water and industrial products providing results that presented recoveries of about 100%.  相似文献   

14.
Poly(vinyl chloride) polymeric membrane sensors containing Sn(IV) phthalocyanine dichloride (SnPC) and Co(II) phthalocyanine (CoPC) as novel electroactive materials dispersed in o‐nitrophenyl octylether (o‐NPOE) as a plasticizer are examined potentiometrically with respect to their response toward selenite (SeO32?) ions. Fast Nernstian response for SeO32? ions over the concentration ranges 7.0×10?6–1.0×10?3 and 8.0×10?6–1.0×10?3 mol L?l at pH 3.5–8.5 with lower detection limit of 5.0×10?6 and 8.0×10?6 mol L?1 and calibration slopes of ?25.4 and ?29.7 mV decade?1 are obtained with SnPC and CoPC based membrane sensors, respectively. The proposed sensors reveals by the modified separate solution method (MSSM) a good selectivity over different anions which differ significantly from the classical Hofmeister series. A segmented sandwich membrane method is used to determine complex formation constants of the ionophores in situe in the solvent polymeric sensing membranes. Membrane incorporating CoPC in a tubular flow detector is used in a two channels flow injection set up for continuous monitoring of selenite at a frequency of ca. 50 samples h?1. Direct determination of selenium in pharmaceutical formulations and anodic slime gives results in good agreement with data obtained using standard ICP method.  相似文献   

15.
The presence of trace basic organonitrogen compounds such as quinoline and pyridine in derivative petroleum fuels plays an important role in maintaining the engines of vehicles. However, these substances can contaminate the environment and so must be controlled because most of them are potentially carcinogenic and mutagenic. For these reasons, a reliable and sensitive method was developed for the determination of basic nitrogen compounds in fuel samples such as gasoline and diesel. This method utilizes preconcentration on an ion–exchange resin (Amberlyte IR–120 H) followed by differential pulse voltammetry (DPV) on a glassy carbon electrode. The electrochemical behavior of quinoline and pyridine as studied by cyclic voltammetry (CV) suggests that their reduction occurs via a reversible electron transfer followed by an irreversible chemical reaction. Very well resolved diffusion‐controlled voltammetric peaks were obtained in dimethylformamide (DMF) with tetrabutylammonium tetrafluoroborate (TBAF4 0.1 mol L?1) for quinoline (?1.95 V) and pyridine (?2.52 V) vs. Ag|AgCl|KClsat reference electrode. The proposed DPV method displayed a good linear response from 0.10 to 300 mg L?1 and a limit of detection (LOD) of 5.05 and 0.25 μg L?1 for quinoline and pyridine, respectively. Using the method of standard additions, the simultaneous determination of quinoline and pyridine in gasoline samples yielded 25.0±0.3 and 33.0±0.7 mg L?1 and in diesel samples yielded 80.3±0.2 and 131±0.4 mg L?1, respectively. Spike recoveries were 94.4±0.3% and 101±0.5% for quinoline and pyridine, respectively, in the fuel determinations. This proposed method was also compared with UV‐vis spectrophotometric measurements. Results obtained for the two methods agreed well based on F and t student's tests.  相似文献   

16.
SiO2/polyvinylidene fluoride (PVDF) composite nanofiber‐coated polypropylene (PP) nonwoven membranes were prepared by electrospinning of SiO2/PVDF dispersions onto both sides of PP nonwovens. The goal of this study was to combine the good mechanical strength of PP nonwoven with the excellent electrochemical properties of SiO2/PVDF composite nanofibers to obtain a new high‐performance separator. It was found that the addition of SiO2 nanoparticles played an important role in improving the overall performance of these nanofiber‐coated nonwoven membranes. Among the membranes with various SiO2 contents, 15% SiO2/PVDF composite nanofiber‐coated PP nonwoven membranes provided the highest ionic conductivity of 2.6 × 10?3 S cm?1 after being immersed in a liquid electrolyte, 1 mol L?1 lithium hexafluorophosphate in ethylene carbonate, dimethyl carbonate and diethyl carbonate. Compared with pure PVDF nanofiber‐coated PP nonwoven membranes, SiO2/PVDF composite fiber‐coated PP nonwoven membranes had greater liquid electrolyte uptake, higher electrochemical oxidation limit, and lower interfacial resistance with lithium. SiO2/PVDF composite fiber‐coated PP nonwoven membrane separators were assembled into lithium/lithium iron phosphate cells and demonstrated high cell capacities and good cycling performance at room temperature. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1719–1726  相似文献   

17.
Nanofiltration (NF) membranes have been widely used for the treatment of electroplating, aerospace, textile, pharmaceutical, and other chemical industries. In this work, halloysite nanotubes (HNTs) were directly anchored on the surface of commercial nanofiltration (NF) membrane by dopamine modification following advantageous bio‐inspired methods. SEM and AFM images were used to characterize the HNTs decorated membrane surface in terms of surface morphology and roughness. Water contact angle (WCA) was employed in evidencing the incorporation of HNTs and dopamine in terms of hydrophilicity or hydrophobicity. Augmentation of HNTs was found to obviously enhance the hydrophilicity and surface roughness resulting in improved water permeability of membrane. More importantly, the rejection ratios of membrane also increased during the removal of heavy metal ions from wastewater. The permeability and Cu2+ rejection ratio of modified NF membrane were as high as 13.9 L·m?2·h?1·bar?1 and 74.3%, respectively. Incorporation of HNTs was also found to enhance the anti‐fouling property and stability of membrane as evident from long‐term performance tests. The relative concentration of HNTs and dopamine on membrane surface was optimized by investigating the trade‐off between water permeability and rejection ratio.  相似文献   

18.
Plasticised membranes using 2-[{(2-hydroxyphenyl)imino}methyl]-phenol (L1) and 2-[{(3-hydroxyphenyl)imino}methyl]-phenol (L2), have been prepared and investigated as Cu2+ ion-selective sensors. Effect of various plasticisers, namely, dibutyl phthalate (DBP), dibutyl sebacate (DBS), benzyl acetate (BA), o-nitrophenyloctylether (o-NPOE) and anion excluders, oleic acid (OA) and sodium tetraphenylborate (NaTPB) was studied and improved performance was observed in several instances. Optimum performance was observed with membranes of (L1) having composition L1 : DBS : OA : PVC in the ratio of 6 : 54 : 10 : 30 (w/w, %). The sensor works satisfactorily in the concentration range 3.2 × 10?8–1.0 × 10?1 mol L?1 with a Nernstian slope of 29.5 ± 0.5 mV decade?1 of a cu2+ . The detection limit of the proposed sensor is 2.0 × 10?8 mol L?1 (1.27 ng mL?1). Wide pH range (3.0–8.5), fast response time (7 s), sufficient (up to 25% v/v) non-aqueous tolerance and adequate shelf life (3 months) indicate the utility of the proposed sensor. The potentiometric selectivity coefficients as determined by matched potential method indicate selective response for Cu2+ ions over various interfering ions, and therefore could be successfully used for the determination of copper in edible oils, tomato plant material and river water.  相似文献   

19.
We report on the design of a UO22+‐selective electrode based on the use of UO22+ imprinted polymer nanoparticles (IP‐NPs), and its application for the differential pulse adsorptive cathodic stripping voltammetry determination of uranyl ions. A carbon paste electrode was modified with the IP‐NPs, and differential pulse adsorptive cathodic stripping voltammetry was applied as the detection technique after open‐circuit sorption of UO22+ ions. The modified electrode responses to UO22+ was linear in the 0.1 µg L?1 to 10 µg L?1 and in the 0.01 mg L?1 to 10 mg L?1. The method detection limit of the sensor was 0.03 µg L?1.  相似文献   

20.
Two chemosensors 4H‐1‐benzopyran‐3‐carboxaldehyde, 4‐oxo‐, 3‐(2‐phenylhydrazone), [I1] and 4H‐1‐benzopyran‐3‐carboxaldehyde, 4‐oxo‐, 3‐[2‐(2,4‐dinitrophenyl)hydrazone], [I2] with hydrazone‐NH group as binding site have been shown excellent selectivity for arsenite ion. It is confirmed by the UV‐vis titration that I2 is more selective than I1. The performance of the coated graphite electrode (CGE) was found to be better than polymeric membrane electrode (PME) in terms of linear range of 4.89×10?7–1.0×10?1 mol L?1, low detection limit of 8.31×10?8 mol L?1 and short response time. The proposed sensors were also used to determine the arsenite ion in different water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号