首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Trifluoromethoxy (OCF3) and difluoromethoxy (OCF2H) groups are fluorinated structural motifs that exhibit unique physicochemical characteristics. Incorporation of these substituents into organic molecules is a highly desirable approach used in medicinal chemistry and drug discovery processes to alter the properties of a parent compound. Recently, tri‐ and difluoromethyl ethers have received increasing attention and several innovative strategies to access these valuable functional groups have been developed. The focus of this Minireview is the use of visible‐light photoredox catalysis in the synthesis of tri‐ and difluoromethyl ethers. Recent photocatalytic strategies for the formation of O?CF3, C?OCF3, O?CF2H, and C?OCF2H bonds as well as other transformations leading to the construction of ORF groups are discussed herein.  相似文献   

2.
The synthetic utility of tertiary amines to oxidatively generate α‐amino radicals is well established, however, primary amines remain challenging because of competitive side reactions. This report describes the site‐selective α‐functionalization of primary amine derivatives through the generation of α‐amino radical intermediates. Employing visible‐light photoredox catalysis, primary sulfonamides are coupled with electron‐deficient alkenes to efficiently and mildly construct C?C bonds. Interestingly, a divergence between intermolecular hydrogen‐atom transfer (HAT) catalysis and intramolecular [1,5] HAT was observed through precise manipulation of the protecting group. This dichotomy was leveraged to achieve excellent α/δ site‐selectivity.  相似文献   

3.
4.
A simple and practical visible‐light‐induced carbo‐2‐pyridylation of electron‐deficient alkenes with readily available N‐benzoylmethylpyridinium bromides is reported. More than 40 examples are presented and proceed in greater than 80 % yield (on average) with excellent regio‐ and diastereoselectivities.  相似文献   

5.
6.
The visible‐light‐promoted decarboxylation of α‐imino‐oxy propionic acids for the generation of iminyl radicals has been accomplished through the use of Ir(dFCF3ppy)2(dtbbpy)PF6 as a photoredox catalyst. Different from visible‐light‐promoted homolysis and single‐electron reduction of oxime derivatives, this strategy provides a novel catalytic cycle for alkene carboimination through a sequence comprising N‐radical generation, iminyl radical cyclization, intermolecular conjugate addition to a Michael acceptor, and single‐electron reduction to afford various pyrroline derivatives in an overall redox‐neutral process. The indolizidine alkaloid skeleton could be easily constructed from a pyrroline derivative prepared by this synthetic method.  相似文献   

7.
Described is a facile, scalable route to access functional‐group‐rich gem ‐difluoroalkenes. Using visible‐light‐activated catalysts in conjunction with an arsenal of carbon‐radical precursors, an array of trifluoromethyl‐substituted alkenes undergoes radical defluorinative alkylation. Nonstabilized primary, secondary, and tertiary radicals can be used to install functional groups in a convergent manner, which would otherwise be challenging by two‐electron pathways. The process readily extends to other perfluoroalkyl‐substituted alkenes. In addition, we report the development of an organotrifluoroborate reagent to expedite the synthesis of the requisite trifluoromethyl‐substituted alkene starting materials.  相似文献   

8.
The chemical inertness of abundant and commercially available alkyl chlorides precludes their widespread use as reactants in chemical transformations. Presented in this work is a metallaphotoredox methodology to achieve the catalytic intramolecular reductive cyclization of unactivated alkyl chlorides with tethered alkenes. The cleavage of strong C(sp3)?Cl bonds is mediated by a highly nucleophilic low‐valent cobalt or nickel intermediate generated by visible‐light photoredox reduction employing a copper photosensitizer. The high basicity and multidentate nature of the ligands are key to obtaining efficient metal catalysts for the functionalization of unactivated alkyl chlorides.  相似文献   

9.
We have developed a strategy to transform olefins into homoallylic nitriles through a mechanism that combines copper catalysis with alkyl nitrile radicals. The radicals are easily generated from alkyl nitriles in the presence of the mild oxidant di‐tert ‐butyl peroxide. This cross‐dehydrogenative coupling between simple olefins and alkylnitriles bears advantages over the conventional use of halides and toxic cyanide reagents. With this method, we showcase the facile synthesis of a flavoring agent, a natural product, and a polymer precursor from simple olefins.  相似文献   

10.
A synergistic catalytic method combining photoredox catalysis, hydrogen‐atom transfer, and proton‐reduction catalysis for the dehydrogenative silylation of alkenes was developed. With this approach, a highly concise route to substituted allylsilanes has been achieved under very mild reaction conditions without using oxidants. This transformation features good to excellent yields, operational simplicity, and high atom economy. Based on control experiments, a possible reaction mechanism is proposed.  相似文献   

11.
The potential of merging photoredox and nickel catalysis to perform multicomponent alkene difunctionalizations under visible‐light irradiation is demonstrated here. Secondary and tertiary alkyl groups, as well as sulfonyl moieties can be added to the terminal position of the double bond with simultaneous arylation of the internal carbon atom in a single step under mild reaction conditions. The process, devoid of stoichiometric additives, benefits from the use of bench‐stable and easy‐to‐handle reagents, is operationally simple, and tolerates a wide variety of functional groups.  相似文献   

12.
13.
14.
Compared to the α‐functionalization of aldehydes, ketones, even esters, the direct α‐modification of amides is still a challenge because of the low acidity of α‐CH groups. The α‐functionalization of N−H (primary and secondary) amides, containing both an unactived α‐C−H bond and a competitively active N−H bond, remains elusive. Shown herein is the general and efficient oxidative α‐oxyamination and hydroxylation of aliphatic amides including secondary N−H amides. This transition‐metal‐free chemistry with high chemoselectivity provides an efficient approach to α‐hydroxy amides. This oxidative protocol significantly enables the selective functionalization of inert α‐C−H bonds with the complete preservation of active N−H bond.  相似文献   

15.
Presented is a novel intermolecular radical trifluoromethylfluorosulfonylation of unactivated alkenes under mild reaction conditions with good functional‐group tolerance in the most atom‐economic manner by using readily available Ag(O2CCF2SO2F) and N ‐fluorobenzenesulfonimide (NFSI). Both the trifluoromethyl and sulfonyl groups in the products originate from Ag(O2CCF2SO2F).  相似文献   

16.
The first successful example of the three‐component coupling of N‐alkylanilines, terminal alkynes, and alcohols was achieved at room temperature by a visible‐light‐mediated copper‐catalyzed photoredox hydrogen‐atom transfer process. This method allows preparation of propargylamines through uniquely selective α‐C?H bond activation of unactivated alkylalcohols. Preliminary studies indicate that formation of α‐oxy radical is operative. This approach facilitates rapid access to biologically important propargylamines from methanol as an abundant feedstock.  相似文献   

17.
Detailed herein is the photochemical organocatalytic enantioselective α‐alkylation of aldehydes with (phenylsulfonyl)alkyl iodides. The chemistry relies on the direct photoexcitation of enamines to trigger the formation of reactive carbon‐centered radicals from iodosulfones, while the ground‐state chiral enamines provide effective stereochemical control over the radical trapping process. The phenylsulfonyl moiety, acting as a redox auxiliary group, facilitates the generation of radicals. In addition, it can eventually be removed under mild reducing conditions to reveal methyl and benzyl groups.  相似文献   

18.
Reported herein is the first example of 2‐allylazaarenes in asymmetric catalysis. Highly γ‐selective allylation was demonstrated for activated ketones, including isatins and trifluoromethyl ketones. In the presence of either an amino‐acid‐based tertiary amine or quaternary ammonium salt catalyst, two series of tertiary hydroxy‐containing moieties were installed at the remote δ‐position of azaarenes in good chemical yields, excellent enantioselectivities, and E /Z ratios. The success of current γ‐selective reactions should provide inspiration for expansion to other allylazaarene derivatives and would open up new paradigms for the synthesis of chiral γ‐ and/or δ‐functionalized azaarenes.  相似文献   

19.
Carbon–carbon bond cleavage/functionalization is synthetically valuable, and selective carbonyl−C(sp3) bond cleavage/alkynylation presents a new perspective in constructing ynamides, ynoates, and ynones. Reported here is the first alkoxyl‐radical‐enabled carbonyl−C(sp3) bond cleavage/alkynylation reaction by photoredox catalysis. The use of novel cyclic iodine(III) reagents are essential for β‐carbonyl alkoxyl radical generation from β‐carbonyl alcohols, including alcohols with high redox potential ( >2.2 V vs. SCE in MeCN). β‐Amide, β‐ester, and β‐ketone alcohols yield ynamides, ynoates, and ynones, respectively, for the first time, with excellent regio‐ and chemoselectivity under mild reaction conditions.  相似文献   

20.
A photochemical organocatalytic strategy for the direct enantioselective β‐benzylation of α,β‐unsaturated aldehydes is reported. The chemistry capitalizes upon the light‐triggered enolization of 2‐alkyl‐benzophenones to afford hydroxy‐o ‐quinodinomethanes. These fleeting intermediates are stereoselectively intercepted by chiral iminium ions, transiently formed upon condensation of a secondary amine catalyst with enals. Density functional theory (DFT) studies provided an explanation for why the reaction proceeds through an unconventional Michael‐type addition manifold, instead of a classical cycloaddition mechanism and subsequent ring‐opening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号