首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrocatalysts for both the oxygen reduction and evolution reactions (ORR and OER) are vital for the performances of rechargeable metal–air batteries. Herein, we report an advanced bifunctional oxygen electrocatalyst consisting of porous metallic nickel‐iron nitride (Ni3FeN) supporting ordered Fe3Pt intermetallic nanoalloy. In this hybrid catalyst, the bimetallic nitride Ni3FeN mainly contributes to the high activity for the OER while the ordered Fe3Pt nanoalloy contributes to the excellent activity for the ORR. Robust Ni3FeN‐supported Fe3Pt catalysts show superior catalytic performance to the state‐of‐the‐art ORR catalyst (Pt/C) and OER catalyst (Ir/C). The Fe3Pt/Ni3FeN bifunctional catalyst enables Zn–air batteries to achieve a long‐term cycling performance of over 480 h at 10 mA cm−2 with high efficiency. The extraordinarily high performance of the Fe3Pt/Ni3FeN bifunctional catalyst makes it a very promising air cathode in alkaline electrolyte.  相似文献   

2.
In situ evolution of electrocatalysts is of paramount importance in defining catalytic reactions. Catalysts for aprotic electrochemistry such as lithium–sulfur (Li‐S) batteries are the cornerstone to enhance intrinsically sluggish reaction kinetics but the true active phases are often controversial. Herein, we reveal the electrochemical phase evolution of metal‐based pre‐catalysts (Co4N) in working Li‐S batteries that renders highly active electrocatalysts (CoSx). Electrochemical cycling induces the transformation from single‐crystalline Co4N to polycrystalline CoSx that are rich in active sites. This transformation propels all‐phase polysulfide‐involving reactions. Consequently, Co4N enables stable operation of high‐rate (10 C, 16.7 mA cm?2) and electrolyte‐starved (4.7 μL mgS?1) Li‐S batteries. The general concept of electrochemically induced sulfurization is verified by thermodynamic energetics for most of low‐valence metal compounds.  相似文献   

3.
The cathodic reactions in Li–S batteries can be divided into two steps. Firstly, elemental sulfur is transformed into long‐chain polysulfides (S8?Li2S4), which are highly soluble in the electrolyte. Next, long‐chain polysulfides undergo nucleation reaction and convert into solid‐state Li2S2 and Li2S (Li2S4?Li2S) by slow processes. As a result, the second‐step of the electrochemical reaction hinders the high‐rate application of Li–S batteries. In this report, the kinetics of the sulfur/long‐chain‐polysulfide redox couple (theoretical capacity=419 mA h g?1) are experimentally demonstrated to be very fast in the Li–S system. A Li–S cell with a blended carbon interlayer retains excellent cycle stability and possesses a high percentage of active material utilization over 250 cycles at high C rates. The meso‐/micropores in the interlayer are responsible for accommodating the shuttling polysulfides and offering sufficient electrolyte accessibility. Therefore, utilizing the sulfur/long‐chain polysulfide redox couple with an efficient interlayer configuration in Li–S batteries may be a promising choice for high‐power applications.  相似文献   

4.
Lithium–sulfur (Li–S) batteries have shown great potential as high energy‐storage devices. However, the stability of the Li metal anode is still a major concern. This is due to the formation of lithium dendrites and severe side reactions with polysulfide intermediates. We herein develop an anode protection method by coating a Nafion/TiO2 composite layer on the Li anode to solve these problems. In this architecture, Nafion suppresses the growth of Li dendrites, protects the Li anode, and prevents side reactions between polysulfides and the Li anode. Moreover, doped TiO2 further improves the ionic conductivity and mechanical properties of the Nafion membrane. Li–S batteries with a Nafion/TiO2‐coated Li anode exhibit better cycling stability (776 mA h g?1 after 100 cycles at 0.2 C, 1 C=1672 mA g?1) and higher rate performance (787 mA h g?1 at 2 C) than those with a pristine Li anode. This work provides an alternative way to construct stable Li anodes for high‐performance Li–S batteries.  相似文献   

5.
Metal‐air batteries, especially Li‐air batteries, have attracted significant research attention in the past decade. However, the electrochemical reactions between CO2 (0.04 % in ambient air) with Li anode may lead to the irreversible formation of insulating Li2CO3, making the battery less rechargeable. To make the Li‐CO2 batteries usable under ambient conditions, it is critical to develop highly efficient catalysts for the CO2 reduction and evolution reactions and investigate the electrochemical behavior of Li‐CO2 batteries. Here, we demonstrate a rechargeable Li‐CO2 battery with a high reversibility by using B,N‐codoped holey graphene as a highly efficient catalyst for CO2 reduction and evolution reactions. Benefiting from the unique porous holey nanostructure and high catalytic activity of the cathode, the as‐prepared Li‐CO2 batteries exhibit high reversibility, low polarization, excellent rate performance, and superior long‐term cycling stability over 200 cycles at a high current density of 1.0 A g−1. Our results open up new possibilities for the development of long‐term Li‐air batteries reusable under ambient conditions, and the utilization and storage of CO2.  相似文献   

6.
《化学:亚洲杂志》2017,12(24):3128-3134
Lithium‐sulfur (Li‐S) batteries have recently attracted a large amount of attention as promising candidates for next‐generation high‐power energy storage devices because of their high theoretical capacity and energy density. However, the shuttle effect of polysulfides and poor conductivity of sulfur are still vital issues that constrain their specific capacity and cyclic stability. Here, we design coaxial MnO2‐graphitic carbon hollow nanofibers as sulfur hosts for high‐performance lithium‐sulfur batteries. The hollow C/MnO2 coaxial nanofibers are synthesized via electrospinning and carbonization of the carbon nanofibers (CNFs), followed by an in situ redox reaction to grow MnO2 nanosheets on the surface of CNFs. The inner graphitic carbon layer not only maintains intimate contact with sulfur and outer MnO2 shell to significantly increase the overall electrical conductivity but also acts as a protective layer to prevent dissolution of polysulfides. The outer MnO2 nanosheets restrain the shuttle effect greatly through chemisorption and redox reaction. Therefore, the robust S@C/MnO2 nanofiber cathode delivers an extraordinary rate capability and excellent cycling stability with a capacity decay rate of 0.044 and 0.051 % per cycle after 1000 cycles at 1.0 C and 2.0 C, respectively. Our present work brings forward a new facile and efficient strategy for the functionalization of inorganic metal oxide on graphitic carbons as sulfur hosts for high performance Li‐S batteries.  相似文献   

7.
Preparation of Ni2P by temperature‐programmed reduction (TPR) of a phosphate precursor is challenging because the P?O bond is strong. An alternative approach to synthesizing Ni2P, by reduction of nickel hexathiodiphosphate (Ni2P2S6), is presented. Conversion of Ni2P2S6 into Ni2P occurs at 200–220 °C, a temperature much lower than that required by the conventional TPR method (typically 500 °C). A sulfur‐containing layer with a thickness of about 4.7 nm, composed of tiny crystallites, was observed at the surface of the obtained Ni2P catalyst (Ni2P?S). This is a direct observation of the sulfur‐containing layer of Ni2P, or the so‐called nickel phosphosulfide phase. Both the hydrodesulfurization activity and the selective hydrogenation performance of Ni2P‐S were superior to that of the catalyst prepared by the TPR method, suggesting a positive role of sulfur on the surface of Ni2P‐S. These features render Ni2P‐S a legitimate alternative non‐precious metal catalyst for hydrogenation reactions.  相似文献   

8.
Of the various beyond‐lithium‐ion batteries, lithium–sulfur (Li‐S) batteries were recently reported as possibly being the closest to market. However, its theoretically high energy density makes it potentially hazardous under conditions of abuse. Therefore, addressing the safety issues of Li‐S cells is necessary before they can be used in practical applications. Here, we report a concept to build a safe and highly efficient Li‐S battery with a flame‐inhibiting electrolyte and a sulfur‐based composite cathode. The flame retardant not only makes the carbonates nonflammable but also dramatically enhances the electrochemical performance of the sulfur‐based composite cathode, without an apparent capacity decline over 750 cycles, and with a capacity greater than 800 mA h?1 g?1(sulfur) at a rate of 10 C.  相似文献   

9.
Lithium–sulfur (Li?S) batteries are attractive owing to their higher energy density and lower cost compared with the universally used lithium‐ion batteries (LIBs), but there are some problems that stop their practical use, such as low utilization and rapid capacity‐fading of the sulfur cathode, which is mainly caused by the shuttle effect, and the uncontrollable deposition of lithium sulfide species. Herein, we report the design and fabrication of dual‐confined sulfur nanoparticles that were encapsulated inside hollow TiO2 spheres; the encapsulated nanoparticles were prepared by a facile hydrolysis process combined with acid etching, followed by “wrapping” with graphene (G?TiO2@S). In this unique composite architecture, the hollow TiO2 spheres acted as effective sulfur carriers by confining the polysulfides and buffering volume changes during the charge‐discharge processes by means of physical force from the hollow spheres and chemical binding between TiO2 and the polysulfides. Moreover, the graphene‐wrapped skin provided an effective 3D conductive network to improve the electronic conductivity of the sulfur cathode and, at the same time, to further suppress the dissolution of the polysulfides. As results, the G?TiO2@S hybrids exhibited a high and stable discharge capacity of up to 853.4 mA h g?1 over 200 cycles at 0.5 C (1 C=1675 mA g?1) and an excellent rate capability of 675 mA h g?1 at a current rate of 2 C; thus, G?TiO2@S holds great promise as a cathode material for Li?S batteries.  相似文献   

10.
Li‐O2 batteries are promising energy storage systems due to their ultra‐high theoretical capacity. However, most Li‐O2 batteries are based on the reduction/oxidation of Li2O2 and involve highly reactive superoxide and peroxide species that would cause serious degradation of cathodes, especially carbon‐based materials. It is important to explore lithium‐oxygen reactions and find new Li‐O2 chemistry which can restrict or even avoid the negative influence of superoxide/peroxide species. Here, inspired by enzyme‐catalyzed oxygen reduction/oxidation reactions, we introduce a copper(I) complex 3 N‐CuI (3 N=1,4,7‐trimethyl‐1,4,7‐triazacyclononane) to Li‐O2 batteries and successfully modulate the reaction pathway to a moderate one on reversible cleavage/formation of O?O bonds. This work demonstrates that the reaction pathways of Li‐O2 batteries could be modulated by introducing an appropriate soluble catalyst, which is another powerful choice to construct better Li‐O2 batteries.  相似文献   

11.
A three‐dimensional (3D) hierarchical MOF‐on‐reduced graphene oxide (MOF‐on‐rGO) compartment was successfully synthesized through an in situ reduced and combined process. The unique properties of the MOF‐on‐rGO compartment combining the polarity and porous features of MOFs with the high conductivity of rGO make it an ideal candidate as a sulfur host in lithium–sulfur (Li‐S) batteries. A high initial discharge capacity of 1250 mAh g?1 at a current density of 0.1 C (1.0 C=1675 mAh g?1) was reached using the MOF‐on‐rGO based electrode. At the rate of 1.0 C, a high specific capacity of 601 mAh g?1 was still maintained after 400 discharge–charge cycles, which could be ascribed to the synergistic effect between MOFs and rGO. Both the hierarchical structures of rGO and the polar pore environment of MOF retard the diffusion and migration of soluble polysulfide, contributing to a stable cycling performance. Moreover, the spongy‐layered rGO can buffer the volume expansion and contraction changes, thus supplying stable structures for Li‐S batteries.  相似文献   

12.
Porous nitrogen‐doped carbon nanotubes (PNCNTs) with a high specific surface area (1765 m2 g?1) and a large pore volume (1.28 cm3 g?1) have been synthesized from a tubular polypyrrole (T‐PPY). The inner diameter and wall thickness of the PNCNTs are about 55 nm and 22 nm, respectively. This material shows extremely promising properties for both supercapacitors and for encapsulating sulfur as a superior cathode material for high‐performance lithium–sulfur (Li‐S) batteries. At a current density of 0.5 A g?1, PNCNT presents a high specific capacitance of 210 F g?1, as well as excellent cycling stability at a current density of 2 A g?1. When the S/PNCNT composite was tested as the cathode material for Li‐S batteries, the initial discharge capacity was 1341 mAh g?1 at a current rate of 1 C and, even after 50 cycles at the same rate, the high reversible capacity was retained at 933 mAh g?1. The promising electrochemical energy‐storage performance of the PNCNTs can be attributed to their excellent conductivity, large surface area, nitrogen doping, and unique pore‐size distribution.  相似文献   

13.
The rational design of effective bifunctional catalysts with enhanced activity toward oxygen reduction reaction and oxygen evolution reaction is of significance to develop high-performance lithium-oxygen (Li–O2) batteries. Herein, sulfur-doped LaNiO3 nanoparticles are elaborately synthesized, and their catalytic activity toward oxygen redox reactions in Li–O2 batteries is comprehensively studied. As confirmed by the density functional theory calculations and experimental results, the substitution of oxygen atoms by sulfur atoms with lower Pauling electronegativity can enhance the covalent feature of bonds, thus increasing electrical conductivity of catalyst. In addition, abundant oxygen vacancies created after sulfur doping are capable of providing concentrated active sites. Simultaneously, sulfur dopants boost the hybridization between Ni 3d orbital and O 2p orbital and increase the covalency of Ni–O bonds due to the increase of Ni3+ with the near-unity occupancy of the eg orbital, thereby increasing the adsorption strength of oxygen-containing intermediates on the surface. Eventually, lowered reaction energy barriers and accelerated reaction kinetics of oxygen electrode reactions are realized, contributing to the optimized electrochemical performance of Li–O2 battery. The Li–O2 battery based on sulfur-doped LaNiO3 with the optimized S-doping level of 2.89 wt% (marked as S2.89 wt%-LNO) delivers a high specific discharge capacity of 24067 mAh/g, an ultralow overpotential of 0.37 V and extended life of 347 cycles.  相似文献   

14.
Supramolecular materials, in which small organic molecules are assembled into regular structures by non‐covalent interactions, attract tremendous interests because of their highly tunable functional groups and porous structure. Supramolecular adsorbents are expected to fully expose their abundant adsorptive sites in a dynamic framework. In this contribution, we introduced cucurbit[6]uril as a supramolecular capsule for reversible storage/delivery of mobile polysulfides in lithium‐sulfur (Li‐S) batteries to control undesirable polysulfide shuttle. The Li‐S battery equipped with the supramolecular capsules retains a high Coulombic efficiency and shows a large increase in capacity from 300 to 900 mAh g−1 at a sulfur loading of 4.2 mg cm−2. The implementation of supramolecular capsules offers insights into intricate multi‐electron‐conversion reactions and manifests as an effective and efficient strategy to enhance Li‐S batteries and analogous applications that involve complex transport phenomena and intermediate manipulation.  相似文献   

15.
Passivation of the sulfur cathode by insulating lithium sulfide restricts the reversibility and sulfur utilization of Li−S batteries. 3D nucleation of Li2S enabled by radical conversion may significantly boost the redox kinetics. Electrolytes with high donor number (DN) solvents allow for tri-sulfur (S3) radicals as intermediates, however, the catastrophic reactivity of such solvents with Li anodes pose a great challenge for their practical application. Here, we propose the use of quaternary ammonium salts as electrolyte additives, which can preserve the partial high-DN characteristics that trigger the S3 radical pathway, and inhibit the growth of Li dendrites. Li−S batteries with tetrapropylammonium bromide (T3Br) electrolyte additive deliver the outstanding cycling stability (700 cycles at 1 C with a low-capacity decay rate of 0.049 % per cycle), and high capacity under a lean electrolyte of 5 μLelectrolyte mgsulfur−1. This work opens a new avenue for the development of electrolyte additives for Li−S batteries.  相似文献   

16.
The limited triple‐phase boundaries (TPBs) in solid‐state cathodes (SSCs) and high resistance imposed by solid electrolytes (SEs) make the achievement of high‐performance all‐solid‐state lithium‐oxygen (ASS Li‐O2) batteries a challenge. Herein, an adjustable‐porosity plastic crystal electrolyte (PCE) has been fabricated by employing a thermally induced phase separation (TIPS) technique to overcome the above tricky issues. The SSC produced through the in‐situ introduction of the porous PCE on the surface of the active material, facilitates the simultaneous transfer of Li+/e?, as well as ensures fast flow of O2, forming continuous and abundant TPBs. The high Li+ conductivity, softness, and adhesion of the dense PCE significantly reduce the battery resistance to 115 Ω. As a result, the ASS Li‐O2 battery based on this adjustable‐porosity PCE exhibits superior performances with high specific capacity (5963 mAh g?1), good rate capability, and stable cycling life up to 130 cycles at 32 °C. This novel design and exciting results could open a new avenue for ASS Li‐O2 batteries.  相似文献   

17.
The two major issues confronting the commercialization of rechargeable lithium-sulfur (Li−S) batteries are the sluggish kinetics of the sulfur electrochemical reactions on the cathode and inadequate lithium deposition/stripping reversibility on the anode. They are commonly mitigated with additives designed specifically for the anode and the cathode individually. Here, we report the use of a single cathode modifier, In2Se3, which can effectively catalyse the polysulfide reactions on the cathode, and also improve the reversibility of Li deposition and removal on the anode through a LiInS2/LiInSe2 containing solid electrolyte interface formed in situ by the Se and In ions dissolved in the electrolyte. The amounts of dissolved Se and In are small relative to the amount of In2Se3 administered. The benefits of using this single modification approach were verified in Li-metal anode-free Li−S batteries with a Li2S loading of 4 mg cm−2 and a low electrolyte/Li2S ratio of 7.5 μL mg−1. The resulting battery showed 60 % capacity retention after 160 cycles at the 0.2 C rate and an average Coulombic efficiency of 98.27 %, comparing very well with recent studies using separate electrode modifiers.  相似文献   

18.
The lithium–sulfur battery is regarded as one of the most promising candidates for lithium–metal batteries with high energy density. However, dendrite Li formation and low cycle efficiency of the Li anode as well as unstable sulfur based cathode still hinder its practical application. Herein a novel electrolyte (1 m LiODFB/EC‐DMC‐FEC) is designed not only to address the above problems of Li anode but also to match sulfur cathode perfectly, leading to extraordinary electrochemical performances. Using this electrolyte, lithium|lithium cells can cycle stably for above 2000 hours and the average Coulumbic efficiency reaches 98.8 %. Moreover, the Li–S battery delivers a reversible capacity of about 1400 mAh g?1sulfur with retention of 89 % for 1100 cycles at 1 C, and a capacity above 1100 mAh g?1sulfur at 10 C. The more advantages of this cell system are its outstanding cycle stability at 60 °C and no self‐discharge phenomena.  相似文献   

19.
Solid‐state electrolytes have emerged as a promising alternative to existing liquid electrolytes for next generation Li‐ion batteries for better safety and stability. Of various types of solid electrolytes, composite polymer electrolytes exhibit acceptable Li‐ion conductivity due to the interaction between nanofillers and polymer. Nevertheless, the agglomeration of nanofillers at high concentration has been a major obstacle for improving Li‐ion conductivity. In this study, we designed a three‐dimensional (3D) nanostructured hydrogel‐derived Li0.35La0.55TiO3 (LLTO) framework, which was used as a 3D nanofiller for high‐performance composite polymer Li‐ion electrolyte. The systematic percolation study revealed that the pre‐percolating structure of LLTO framework improved Li‐ion conductivity to 8.8×10?5 S cm?1 at room temperature.  相似文献   

20.
We demonstrate the synthesis of cathode material with nanosized sulfur by a precipitation method making use of the alterable solubility of chitosan (CTS) in aqueous solution. Mesoporous Ketjen Black (KB) and carbon nanotube (CNT) are added as conductive agents to provide the three‐dimensional electric channels. This method can reduce the size of the sulfur particles, thus the nanosized sulfur obtained can fully contact with the conductive agent, which could increase the utilization of sulfur and improve the capacity of Li‐S batteries. Moreover, CTS with abundant hydroxyl and amine groups has strong interaction with polysulfides, which can improve the stability of Li‐S batteries. As a result, the obtained CTS/C‐S cathode containing 76 wt% sulfur delivers an impressively initial discharge specific capacity of 1141.6 mA·h·g–1 at 0.5 C and maintains a capacity of 842.3 mA·h·g–1 after 300 cycles. Our finding paves a way for the rational design of high‐performance sulfur cathodes for advanced Li‐S batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号