首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The telechelic α,ω‐alkyne‐poly(methyl methacrylate) (alkyne‐PMMA‐alkyne) was synthesized by single electron transfer radical coupling (SETRC) reaction of α‐alkyne, ω‐bromine‐poly(methyl methacrylate) (alkyne‐ PMMA‐Br). The propargyl 2‐bomoisobutyrate (PgBiB) was first prepared to initiate atom transfer radical polymerization (ATRP) of methyl methacrylate at 45°C using CuCl/1,1,4,7,10,10‐hexamethyl triethylenetetramine (HMTETA) as homogeneous catalytic system. Then the SETRC reaction was conducted at room temperature in the presence of nascent Cu(0) and N,N,N′,N′ ′,N′ ′‐pentamethyldiethyllenetriamine (PMDETA). The precursor alkyne‐PMMA‐Br and coupled product alkyne‐PMMA‐alkyne were characterized by GPC and 1H NMR in detail.  相似文献   

2.
A series of well‐defined double‐hydrophilic graft copolymers, consisting of poly(N‐isopropylacrylamide)‐b‐poly(ethyl acrylate) (PNIPAM‐b‐PEA) backbone and poly(2‐(dimethylamino)ethyl acrylate) (PDMAEA) side chains, were synthesized by the combination of single‐electron‐transfer living radical polymerization (SET‐LRP) and atom‐transfer radical polymerization (ATRP). PNIPAM‐b‐PEA backbone was first prepared by sequential SET‐LRP of N‐isopropylacrylamide and 2‐hydroxyethyl acrylate at 25 °C using CuCl/tris(2‐(dimethylamino)ethyl)amine as catalytic system followed by the transformation into the macroinitiator by treating the pendant hydroxyls with 2‐chloropropionyl chloride. The final graft copolymers with narrow molecular weight distributions were synthesized by ATRP of 2‐(dimethylamino)ethyl acrylate initiated by the macroinitiator at 40 °C using CuCl/tris(2‐(dimethylamino)ethyl)amine as catalytic system via the grafting‐from strategy. These copolymers were employed to prepare stable colloidal gold nanoparticles with controlled size in aqueous solution without any external reducing agent. The morphology and size of the nanoparticles were affected by the length of PDMAEA side chains, pH value, and the feed ratio of the graft copolymer to HAuCl4. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1811–1824, 2009  相似文献   

3.
A series of well‐defined double hydrophilic graft copolymers containing poly[poly(ethylene glycol) methyl ether acrylate] (PPEGMEA) backbone and poly[poly(ethylene glycol) ethyl ether methacrylate] (PPEGEEMA) side chains were synthesized by the combination of single electron transfer‐living radical polymerization (SET‐LRP) and atom transfer radical polymerization (ATRP). The backbone was first prepared by SET‐LRP of poly(ethylene glycol) methyl ether acrylate macromonomer using CuBr/tris(2‐(dimethylamino)ethyl)amine as catalytic system. The obtained comb copolymer was treated with lithium diisopropylamide and 2‐bromoisobutyryl bromide to give PPEGMEA‐Br macroinitiator. Finally, PPEGMEA‐g‐PPEGEEMA graft copolymers were synthesized by ATRP of poly(ethylene glycol) ethyl ether methacrylate macromonomer using PPEGMEA‐Br macroinitiator via the grafting‐from route. The molecular weights of both the backbone and the side chains were controllable and the molecular weight distributions kept narrow (Mw/Mn ≤ 1.20). This kind of double hydrophilic copolymer was found to be stimuli‐responsive to both temperature and ion (0.3 M Cl? and SO). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 647–655, 2010  相似文献   

4.
储鸿  杨伟  陈明清  陆剑燕  施冬健  明石满 《中国化学》2008,26(10):1907-1912
以α-溴代丙酸乙酯(EPN-Br)为引发剂, N,N, N′,N″,N″-五甲基二亚乙基三胺(PMDETA)为配体,使甲基丙烯酸叔丁酯进行原子转移自由基聚合,合成了端基带溴原子的聚甲基丙烯酸叔丁酯(PtBMA-Br)大分子中间体,通过其与甲基丙烯酸的亲核取代反应,得到了末端C=C双键含量高的大分子单体(MAA-PtBMA),其相对分子质量可控制在5400-12000g/mol的范围内,分子量分布≤1.20。以偶氮二异丁腈为自由基引发剂,在乙醇中使MAA-PtBMA大分子单体与苯乙烯(St)进行分散共聚,制得了甲基丙烯酸叔丁酯接枝聚苯乙烯(PtBMA-g-PSt)微米级共聚微球,该微球具有核壳结构。  相似文献   

5.
Poly(n‐butyl acrylate) macromonomers with predetermined molecular weights (1300 < number‐average molecular weight < 23,000) and low polydispersity indices (<1.2) were synthesized from bromine‐terminated atom transfer radical polymerization polymers via end‐group substitution with acrylic acid and methacrylic acid. These macromonomers, having a high degree of end‐group functionalization (>90%), were radically homopolymerized to obtain comb polymers. A high macromonomer concentration, combined with a low radical flux, was needed to obtain a high conversion of the macromonomers and a reasonable degree of polymerization. By the traditional radical copolymerization of the hydrophobic macromonomers with the hydrophilic monomer N,N‐dimethylaminoethyl methacrylate (DMAEMA), amphiphilic comb copolymers were obtained. The conversions of the macromonomers and comonomer were almost quantitative under optimized reaction conditions. The molecular weights were high (number‐average molecular weight ≈70,000), and the molecular weight distribution was broad (polydispersity index ≈ 3.5). Kinetic measurements showed simultaneous decreases in the macromonomer and DMAEMA concentrations, indicating a relatively homogeneous composition of the comb copolymers over the whole molecular weight range. This was supported by preparative size exclusion chromatography. The copolymerization of poly(n‐butyl acrylate) macromonomers with other hydrophilic monomers such as acrylic acid or N,N‐dimethylacrylamide gave comb copolymers with multimodal molecular weight distributions in size exclusion chromatography and extremely high apparent molecular weights. Dynamic light scattering showed a heterogeneous composition consisting of small (6–9 nm) and large (23–143 nm) particles, probably micelles or other type of aggregates. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3425–3439, 2003  相似文献   

6.
Isobornyl methacrylate (IBMA), a bulky hydrophobic methacrylate, undergoes very fast polymerization, in bulk, with Cu(I)Br/N,N,N′,N″,N″‐pentamethyldiethylenetriamine (PMDETA)/ethyl‐2‐bromoisobutyrate system, at ambient temperature. IBMA also undergoes a spontaneous initiator‐free polymerization, at ambient temperature, with Cu(I)Br/PMDETA catalytic system in dimethyl sulfoxide–water mixtures. The rate of the polymerization is seen to increase with the water content up to 80 mol % of water. A possible intervention of air in initiation is proposed. The active Cu(0) formed by the disproportionation of Cu(I) species in aqueous medium probably plays a vital role for a possible air‐initiation of IBMA via single electron transfer‐living radical polymerization (SET‐LRP) mechanism. A high tolerance level to water under SET‐LRP conditions is demonstrated. The poly(IBMA) samples obtained exhibit low molecular weight distributions (1.1–1.3). Similar behavior was not observed with other common methacrylates such as methyl methacrylate, t‐butyl methacrylate, cyclohexyl methacrylate, and benzyl methacrylate. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

7.
A series of ferrocene‐based well‐defined amphiphilic graft copolymers, consisting of hydrophilic poly[poly(ethylene glycol) methyl ether acrylate] (PPEGMEA) backbone and hydrophobic poly(2‐acryloyloxyethyl ferrocenecarboxylate) (PAEFC) side chains were synthesized by successive single‐electron‐transfer living radical polymerization (SET‐LRP) and atom transfer radical polymerization (ATRP). The backbone was prepared by SET‐LRP of PEGMEA macromonomer, and it was then treated with lithium di‐isopropylamide and 2‐bromopropionyl bromide at ?78 °C to give PPEGMEA‐Br macroinitiator. The targeted well‐defined graft copolymers with narrow molecular weight distributions (Mw/Mn ≤ 1.32) were synthesized via ATRP of AEFC initiated by PPEGMEA‐Br macroinitiator, and the molecular weights of the backbone and side chains were both controllable. The electro‐chemical behaviors of graft copolymers were studied by cyclic voltammetry, and it was found that graft copolymers were more difficult to be oxidized, and the reversibility of electrode process became less with raising the content of PAEFC segment. The effects of the preparation method, the length of hydrophobic PAEFC segment, and the initial water content on self‐assembly behavior of PPEGMEA‐g‐PAEFC graft copolymers in aqueous media were investigated by transmission electron microscopy. The morphologies of micelles could transform from cylinders to spheres or rods with changing the preparation condition and the length of side chains. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

8.
Abstract

Comb‐like polystyrene grafted silica nanoparticles (c‐PS‐SNs) were prepared by the following steps: (a) methacryloxypropyl silica nanoparticles (MPSNs) were used as macromonomer and free radical copolymerized with 4‐vinyl benzyl chloride (VBC) by a solution polymerization method; (b) the product of (A), poly(4‐vinyl benzyl chloride) grafted silica nanoparticle (PVBC‐SN) was separated and then used as a macroinitiator for the surface‐initiated atom transfer radical polymerization (SI‐ATRP) of styrene catalyzed by the complex of Cu(I)Br and 2,2′‐bipyridyl (bipy) in toluene solutions. The structurally well‐defined polymer chains were grown from the nanoparticle surfaces to yield particles composed of a silica core and a well defined, densely grafted outer comb‐like PS layer. A percentage of grafting (PG%) (the weight ratio of the PS grafted with that of the silica charged) of more than 80% was achieved after a polymerizing time of 5?hr.  相似文献   

9.
Poly(n‐butyl acrylate)‐graft‐branched polyethylene was successfully prepared by the combination of two living polymerization techniques. First, a branched polyethylene macromonomer with a methacrylate‐functionalized end group was prepared by Pd‐mediated living olefin polymerization. The macromonomer was then copolymerized with n‐butyl acrylate by atom transfer radical polymerization. Gel permeation chromatography traces of the graft copolymers showed narrow molecular weight distributions indicative of a controlled reaction. At low macromonomer concentrations corresponding to low viscosities, the reactivity ratios of the macromonomer to n‐butyl acrylate were similar to those for methyl methacrylate to n‐butyl acrylate. However, the increased viscosity of the reaction solution resulting from increased macromonomer concentrations caused a lowering of the apparent reactivity ratio of the macromonomer to n‐butyl acrylate, indicating an incompatibility between nonpolar polyethylene segments and a polar poly(n‐butyl acrylate) backbone. The incompatibility was more pronounced in the solid state, exhibiting cylindrical nanoscale morphology as a result of microphase separation, as observed by atomic force microscopy. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2736–2749, 2002  相似文献   

10.
Surface‐initiated atom transfer radical polymerization (SI‐ATRP) of N‐isopropylacrylamide (NIPAM) on silicon wafer in the presence of 2‐mercaptoethanol (ME) chain transfer agent was conducted in attempt to create controllable hydroxyl‐terminated brushes. The initiator‐immobilized substrate, was prepared by the esterification of hydroxyl groups on silicon wafer with 2‐bromopropionyl bromide (2‐BPB); followed by the ATRP of NIPAM using a catalyst system, that is, Cu(I)Br/2,2′‐bipyridine (2,2′‐bpy) and a chain transfer agent, that is, ME. The formation of homogeneous tethered poly(N‐isopropylacrylamide) (poly(NIPAM) brushes with hydroxyl end‐group, whose thickness can be tuned by chancing ME concentration, is evidenced by using the combination of grazing angle attenuated total reflectance‐Fourier transform infrared spectroscopy, X‐ray photoelectron spectroscopy, ellipsometry, atomic force microscopy, gel permeation chromatography, and water contact‐angle measurements. The calculation of grafting parameters from experimental measurements indicated the synthesis of densely grafted poly(NIPAM) films with hydroxyl end‐group on silicon wafer and allowed us to predict a ME concentration for forming a “brush” conformation for the chains. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3880–3887, 2010  相似文献   

11.
A series of well‐defined double hydrophilic graft copolymers, consisting of poly(N‐isopropylacrylamide)‐b‐poly(ethyl acrylate) backbone and poly(2‐vinylpyridine) side chains, were synthesized by successive single‐electron‐transfer living radical polymerization (SET‐LRP) and atom transfer radical polymerization (ATRP). The backbone was prepared by sequential SET‐LRP of N‐isopropylacrylamide and 2‐hydroxyethyl acrylate at 25 °C using CuCl/tris(2‐(dimethylamino)ethyl)amine as the catalytic system. The obtained diblock copolymer was transformed into the macroinitiator by reacting with 2‐chloropropionyl chloride. Next, grafting‐from strategy was used for the synthesis of poly(N‐isopropylacrylamide)‐b‐[poly(ethyl acrylate)‐g‐poly(2‐vinylpyridine)] double hydrophilic graft copolymer. ATRP of 2‐vinylpyridine was initiated by the macroinitiator at 25 °C using CuCl/hexamethyldiethylenetriamine as the catalytic system. The synthesis of both the backbone and the side chains are controllable. Thermo‐ and pH‐responsive schizophrenic micellization behaviors were investigated by 1H NMR, fluorescence spectroscopy, dynamic light scattering, and transmission electron microscopy. Unimolecular micelles with PNIPAM‐core formed in acidic environment (pH = 2) with elevated temperature (T ≥ 32 °C), whereas the aggregates turned into spheres with PEA‐g‐P2VP‐core accompanied with the lifting of pH values (pH ≥ 5.3) at room temperature. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 15–23, 2010  相似文献   

12.
Block copolymers of polystyrene and poly(t‐butyl acrylate) were prepared using atom transfer radical polymerization techniques. These polymers were synthesized with a CuBr/N,N,N′,N″,N″‐pentamethyldiethylenetriamine catalyst system and had predictable molecular weights based on the degree of polymerization, as calculated from the initial ratio of monomer to initiator. The final polydispersities were low (1.10 < Mw /Mn < 1.3) for all the homopolymers and block copolymers. Polymers of various chain architectures were prepared, ranging from linear AB diblocks to three‐armed stars composed of AB diblocks on each arm. The key to controlled synthesis with this catalyst system was the choice of the solvent, temperature, and concentrations of catalyst and deactivator. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2274–2283, 2000  相似文献   

13.
Heterograft copolymers poly(4‐glycidyloxy‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl‐co‐ ethylene oxide)‐graft‐polystyrene and poly(tert‐butyl acrylate) (poly (GTEMPO‐co‐EO)‐g‐PS/PtBA) were synthesized in one‐pot by atom transfer nitroxide radical coupling (ATNRC) reaction via “graft onto.” The main chain was prepared by the anionic ring‐opening copolymerization of ethylene oxide (EO) and 4‐glycidyloxy‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl (GTEMPO) first, then the polystyrene and poly (tert‐butyl acrylate) with bromine end (PS‐Br, PtBA‐Br) were prepared by atom transfer radical polymerization (ATRP). When three of them were mixed each other in the presence of CuBr/N,N,N,N,N″‐pentamethyldiethylenetriamine (PMDETA) at 90 °C, the formed secondary carbon radicals at the PS and PtBA chain ends were quickly trapped by nitroxide radicals on poly(GTEMPO‐co‐EO). The heterograft copolymers were well defined by 1H NMR, size exclusion chromatography, fourier transform infrared, and differential scanning calorimetry in detail. It was found that the density of GTEMPO groups on main chain poly(GTEMPO‐co‐EO), the molecular weights of PS/PtBA side chains, and the structure of macroradicals can exert the great effects on the graft efficiency. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6770–6779, 2008  相似文献   

14.
Macrocyclic molecular brushes c‐PHEMA‐g‐(PS‐b‐PEO) consisting of macrocyclic poly(2‐hydroxylethyl methacrylate) (c‐PHEMA) as backbone and polystyrene‐b‐poly(ethylene oxide) (PS‐b‐PEO) amphiphilic block copolymers as side chains were synthesized by the combination of atom transfer radical polymerization (ATRP), click chemistry, and single‐electron transfer nitroxide radical coupling (SET‐NRC). First, a linear α‐alkyne‐ω‐azido heterodifunctional PHEMA (l‐HC?C‐PHEMA‐N3) was prepared by ATRP of HEMA using 3‐(trimethylsilyl)propargyl 2‐bromoisobutyrate as initiator, and then chlorine end groups were transformed to ? N3 group by nucleophilic substitution reaction in DMF in the presence of an excess of NaN3. The 3‐trimethylsilyl groups could be removed in the presence of tetrabutylammonium fluoride, and the product was cyclized by “click” chemistry in high dilution conditions. The hydroxyl groups on c‐PHEMA were transferred into bromine groups by esterification with 2‐bromoisobutyryl bromide and then initiate the ATRP of styrene. The formed macrocyclic molecular brushes c‐PHEMA‐g‐PS were coupled with the TEMPO‐PEO to afford the target macrocyclic molecular brushes c‐PHEMA‐g‐(PS‐b‐PEO) by SET‐NRC, and the efficiency is as high as 80~85%. All of the intermediates and final product were characterized with 1H NMR, Fourier transform infrared (FTIR), and gel permeation chromatography in details © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

15.
Chain transfer to solvent has been investigated in the conventional radical polymerization and nitroxide‐mediated radical polymerization (NMP) of N‐isopropylacrylamide (NIPAM) in N,N‐dimethylformamide (DMF) at 120 °C. The extent of chain transfer to DMF can significantly impact the maximum attainable molecular weight in both systems. Based on a theoretical treatment, it has been shown that the same value of chain transfer to solvent constant, Ctr,S, in DMF at 120 °C (within experimental error) can account for experimental molecular weight data for both conventional radical polymerization and NMP under conditions where chain transfer to solvent is a significant end‐forming event. In NMP (and other controlled/living radical polymerization systems), chain transfer to solvent is manifested as the number‐average molecular weight (Mn) going through a maximum value with increasing monomer conversion. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

16.
This investigation reports the polymerization of hexyl acrylate (HA) using atom transfer radical polymerization technique and subsequently the preparation of its di‐ and triblock copolymers with methyl methacrylate. Atom transfer radical polymerization of HA was investigated using different initiators and CuBr or CuCl as catalyst in combination with varying ligands, e.g., 2,2′‐bipyridine and N,N,N′,N″,N″‐pentamethyl diethylenetriamine. Reaction parameters were adjusted to successfully polymerize HA with well‐defined molecular weights and narrow polydispersity indices. The polymerization was better controlled by the addition of polar solvents, which created a homogeneous catalytic system. UV–vis analysis showed that the polar solvent, acetone coordinated with copper (I), changes the nature of the copper catalyst, thereby influencing the dynamic equilibrium of activation–deactivation cycle. This resulted in improved control over polymerization as well as in lowering the polydispersity indices, but at the cost of polymerization rate compared with the bulk process. The presence of ? Br end group in the polymer chains was confirmed by 1H NMR as well as MALDI‐TOF mass analysis. In addition, poly(hexyl acrylate) was used as macroinitiator to prepare various “all‐acrylate” block (diblock, triblock) copolymers that were characterized by GPC and 1H NMR. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3499–3511, 2008  相似文献   

17.
1,4-Dibromo-2,5-bis(bromomethyl)benzene was used as initiator in atom transfer radical polymerization of styrene in conjunction with CuBr/2,2-bipyridine as catalyst. The resulting macromonomer, with a central 2,5 dibromobenzene ring and the degree of polymerization of 16 at each side, was used in combination with 2,5-dihexylbenzene-1,4-diboronic acid, for a Suzuki coupling in the presence of Pd(PPh3)4 as catalyst. The obtained polyphenylene, with alternating polystyrene and hexyl side chains, has high solubility in common organic solvents at room temperature. The new polymer was characterized by GPC, 1H-NMR, 13C-NMR, IR and UV analysis. Thermal behavior of the precursor polystyrene macromonomer and the final polyphenylene was investigated by thermogravimetric analysis and differential scanning calorimeter/calorimetry analyses and compared.  相似文献   

18.
A series of well‐defined double hydrophilic graft copolymers containing poly(poly(ethylene glycol) methyl ether acrylate) (PPEGMEA) backbone and poly(2‐vinylpyridine) (P2VP) side chains were synthesized by successive single electron transfer living radical polymerization (SET‐LRP) and atom transfer radical polymerization (ATRP). The backbone was first prepared by SET‐LRP of poly(ethylene glycol) methyl ether acrylate (PEGMEA) macromonomer using CuBr/tris(2‐(dimethylamino)ethyl)amine as catalytic system. The obtained homopolymer then reacted with lithium diisopropylamide and 2‐chloropropionyl chloride at ?78 °C to afford PPEGMEA‐Cl macroinitiator. poly(poly(ethylene glycol) methyl ether acrylate)‐g‐poly(2‐vinylpyridine) double hydrophilic graft copolymers were finally synthesized by. ATRP of 2‐vinylpyridine initiated by PPEGMEA‐Cl macroinitiator at 25 °C using CuCl/hexamethyldiethylenetriamine as catalytic system via the grafting‐ from strategy. The molecular weights of both the backbone and the side chains were controllable and the molecular weight distributions kept relatively narrow (Mw/Mn ≤ 1.40). pH‐Responsive micellization behavior was investigated by 1H NMR, dynamic light scattering, and transmission electron microscopy and this kind of double hydrophilic graft copolymer aggregated to form micelles with P2VP‐core while pH of the aqueous solution was above 5.0. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

19.
In this contribution, we reported the synthesis of a hyperbranched block copolymer composed of poly(ε‐caprolactone) (PCL) and polystyrene (PS) subchains. Toward this end, we first synthesized an α‐alkynyl‐ and ω,ω′‐diazido‐terminated PCL‐b‐(PS)2 macromonomer via the combination of ring‐opening polymerization and atom transfer radical polymerization. By the use of this AB2 macromonomer, the hyperbranched block copolymer (h‐[PCL‐b‐(PS)2]) was synthesized via a copper‐catalyzed Huisgen 1,3‐dipolar cycloaddition (i.e., click reaction) polymerization. The hyperbranched block copolymer was characterized by means of 1H nuclear magnetic resonance spectroscopy and gel permeation chromatography. Both differential scanning calorimetry and atomic force microscopy showed that the hyperbranched block copolymer was microphase‐separated in bulk. While this hyperbranched block copolymer was incorporated into epoxy, the nanostructured thermosets were successfully obtained; the formation of the nanophases in epoxy followed reaction‐induced microphase separation mechanism as evidenced by atomic force microscopy, small angle X‐ray scattering, and dynamic mechanical thermal analysis. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 368–380  相似文献   

20.
Polymer–silicate nanocomposites were synthesized with atom transfer radical polymerization (ATRP). An ATRP initiator, consisting of a quaternary ammonium salt moiety and a 2‐bromo‐2‐methyl propionate moiety, was intercalated into the interlayer spacings of the layered silicate. Subsequent ATRP of styrene, methyl methacrylate, or n‐butyl acrylate with Cu(I)X/N,N‐bis(2‐pyridiylmethyl) octadecylamine, Cu(I)X/N,N,N,N,N″‐pentamethyldiethylenetriamine, or Cu(I)X/1,1,4,7,10,10‐hexamethyltriethylenetetramine (X = Br or Cl) catalysts with the initiator‐modified silicate afforded homopolymers with predictable molecular weights and low polydispersities, both characteristics of living radical polymerization. The polystyrene nanocomposites contained both intercalated and exfoliated silicate structures, whereas the poly(methyl methacrylate) nanocomposites were significantly exfoliated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 916–924, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号