首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The bis(arylimino)pyridines, 2‐[CMeN{2,6‐{(4‐FC6H4)2CH}2–4‐NO2}]‐6‐(CMeNAr)C5H3N (Ar = 2,6‐Me2C6H3 L1 , 2,6‐Et2C6H3 L2 , 2,6‐i‐Pr2C6H3 L3 , 2,4,6‐Me3C6H2 L4 , 2,6‐Et2–4‐MeC6H2 L5 ), each containing one N′‐2,6‐bis{di(4‐fluorophenyl)methyl}‐4‐nitrophenyl group, have been synthesized by two successive condensation reactions from 2,6‐diacetylpyridine. Their subsequent treatment with anhydrous cobalt (II) chloride gave the corresponding N,N,N′‐CoCl2 chelates, Co1 – Co5 , in excellent yield. All five complexes have been characterized by 1H/19F NMR and IR spectroscopy as well as by elemental analysis. In addition, the molecular structures of Co1 and Co3 have been determined and help to emphasize the differences in steric properties imposed by the inequivalent N‐aryl groups; distorted square pyramidal geometries are adopted by each complex. Upon activation with either methylaluminoxane (MAO) or modified methylaluminoxane (MMAO), precatalyts Co1 – Co5 collectively exhibited very high activities for ethylene polymerization with 2,6‐dimethyl‐substituted Co1 the most active (up to 1.1 × 107 g (PE) mol?1 (Co) h?1); the MAO systems were generally more productive. Linear polyethylenes of exceptionally high molecular weight (Mw up to 1.3 × 106 g mol?1) were obtained in all cases with the range in dispersities exhibited using MAO as co‐catalyst noticeably narrower than with MMAO [Mw/Mn: 3.55–4.77 ( Co1 – Co5 /MAO) vs. 2.85–12.85 ( Co1 – Co5 /MMAO)]. Significantly, the molecular weights of the polymers generated using this class of cobalt catalyst are higher than any literature values reported to date using related N,N,N‐bis (arylimino)pyridine‐cobalt catalysts.  相似文献   

2.
Five examples of unsymmetrical 1,2‐bis (arylimino) acenaphthene ( L1 – L5 ), each containing one N‐2,4‐bis (dibenzocycloheptyl)‐6‐methylphenyl group and one sterically and electronically variable N‐aryl group, have been used to prepare the N,N′‐nickel (II) halide complexes, [1‐[2,4‐{(C15H13}2–6‐MeC6H2N]‐2‐(ArN)C2C10H6]NiX2 (X = Br: Ar = 2,6‐Me2C6H3 Ni1 , 2,6‐Et2C6H3 Ni2 , 2,6‐i‐Pr2C6H3 Ni3 , 2,4,6‐Me3C6H2 Ni4 , 2,6‐Et2–4‐MeC6H2 Ni5 ) and (X = Cl: Ar = 2,6‐Me2C6H3 Ni6 , 2,6‐Et2C6H3 Ni7 , 2,6‐i‐Pr2C6H3 Ni8 , 2,4,6‐Me3C6H2 Ni9 , 2,6‐Et2–4‐MeC6H2 Ni10 ), in high yield. The molecular structures Ni3 and Ni7 highlight the extensive steric protection imparted by the ortho‐dibenzocycloheptyl group and the distorted tetrahedral geometry conferred to the nickel center. On activation with either Et2AlCl or MAO, Ni1 – Ni10 exhibited very high activities for ethylene polymerization with the least bulky Ni1 the most active (up to 1.06  ×  107 g PE mol?1(Ni) h?1 with MAO). Notably, these sterically bulky catalysts have a propensity towards generating very high molecular weight polyethylene with moderate levels of branching and narrow dispersities with the most hindered Ni3 and Ni8 affording ultra‐high molecular weight material (up to 1.5  ×  106 g mol?1). Indeed, both the activity and molecular weights of the resulting polyethylene are among the highest to be reported for this class of unsymmetrical 1,2‐bis (imino)acenaphthene‐nickel catalyst.  相似文献   

3.
The N,N,O‐cobalt(II), [2,3‐{C4H8C(NAr)}:5,6‐{C4H8C(O)}C5HN]CoCl2 (Ar = 2,6‐(CHPh2)2‐4‐MeC6H2 Co1 , 2,6‐(CHPh2)2‐4‐EtC6H2 Co2 , 2,6‐(CHPh2)2‐4‐ClC6H2 Co3 , 2,6‐(CHPh2)2‐4‐FC6H2 Co4 ) and N,N,O‐iron(II) complexes, [2,3‐{C4H8C(NAr)}:5,6‐{C4H8C(O)}C5HN]FeCl2 (Ar = 2,6‐(CHPh2)2‐4‐MeC6H2 Fe1 , 2,6‐(CHPh2)2‐4‐EtC6H2 Fe2 , 2,6‐(CHPh2)2‐4‐ClC6H2 Fe3 , 2,6‐(CHPh2)2‐4‐FC6H2 Fe4 ), each containing one sterically enhanced but electronically modifiable N‐2,6‐dibenzhydryl‐4‐R2‐phenyl group, have been prepared by a one‐pot template approach using α,α′‐dioxo‐2,3:5,6‐bis(pentamethylene)pyridine, the corresponding aniline along with the respective cobalt or iron salt in acetic acid. Distorted square pyramidal geometries are a feature of the molecular structures of Co1 – Co4 . Upon activation with MAO or MMAO, Co1 – Co4 show good activities (up to 2.2 × 105 g mol?1(Co) h?1) affording short chain oligomers (C4–C30) with good α‐olefin selectivity. By contrast, Fe1 – Fe4 , in the presence of MMAO, displayed moderate activities (up 10.9 × 104 g(PE) mol?1(Fe) h?1) for ethylene polymerization forming low‐molecular‐weight linear polymers (up to 13.0 kg mol?1) incorporating saturated n‐propyl and i‐butyl chain ends. For both cobalt and iron, the precatalysts incorporating the more electron withdrawing 4‐R2‐substituents [Cl ( Co3 / Fe3 ), F ( Co4 / Fe4 )] deliver the best catalytic activities, while with cobalt, these types of substituents additionally broaden the oligomeric distribution. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 3980–3989  相似文献   

4.
Density‐functional theory calculations of a series of organic biradicals on the basis of the N,N′‐dioxy‐2,6‐diazaadamantane core with different substituents at carbon atoms adjacent to the nitroxyl groups have been performed by the UB3LYP/6‐311++G(2d,2p) method. Using the breaking symmetry approach, the values of the exchange interaction parameter, J, between the radical centers are calculated. It is shown that the intramolecular exchange interaction for the most part is ferromagnetic in nature, but the J parameter gradually decreases, changing its sign to antiferromagnetic interaction for the last substituent in the following sequence: CF3(CH3)COH > CH2F(H)COH > CH2OH > H > CBr3 > CH2F > CCl3 > CF3 > CH2Br > CH2Cl > CH3 > C2H5 > C3H7 > i‐C4H9 > F > Br > OCH3 > Cl > CH2C6H5. The calculations at the UHSEH1PBE/6‐311++G(2d,2p) level with the most of substituents show nearly the same variation sequence for the J parameter. It is concluded that spin polarization effects in the diazaadamantane cage and a direct through‐space antiferromagnetic exchange interaction between the nitroxyl groups are the main mechanisms contributing to the exchange interaction parameter value in the studied series of compounds. The exchange coupling constant, J, depends on the electronic effects and geometry of the substituents, as well as on their specific interactions with the nitroxyl radical groups.  相似文献   

5.
Five examples of nickel(II) bromide complexes bearing N,N‐imino‐cyclopenta[b ]pyridines, [7‐(ArN)‐6,6‐Me2C8H5N]NiBr2 (Ar = 2,6‐Me2C6H3 ( Ni1 ), 2,6‐Et2C6H3 ( Ni2 ), 2,6‐i‐ Pr2C6H3 ( Ni3 ), 2,4,6‐Me3C6H2 ( Ni4 ), 2,6‐Et2‐4‐MeC6H2 ( Ni5 )), have been prepared by the reaction of the corresponding ligand, L1 – L5 , with NiBr2(DME) (DME = 1,2‐dimethoxyethane). On crystallization from bench dichloromethane, Ni1 underwent adventitious reaction with water to give the aqua salt, [ L1 NiBr(OH2)3][Br] ( Ni1' ). The molecular structures of Ni1' and Ni3 have been structurally characterized, the latter revealing a bromide‐bridged dimer. On activation with either MMAO or Et2AlCl, Ni1 , Ni2 , Ni4, and Ni5 , all exhibited high activities for ethylene polymerization (up to 3.88 × 106 g(PE) mol?1(Ni) h?1); the most sterically bulky Ni3 gave only low activity. Polyethylene waxes are a feature of the materials obtained which typically display low molecular weights (M ws), narrow M w distributions and unsaturated vinyl and vinylene functionalities. Notably, the catalyst comprising Ni1 /Et2AlCl produced polyethylene with the lowest M w, 0.67 kg mol?1, which is less than any previously reported data for any class of cycloalkyl‐fused pyridine–nickel catalyst. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 3494–3505  相似文献   

6.
Ethylene copolymerizations with norbornene (NBE) using half‐titanocenes containing imidazolin‐2‐iminato ligands, Cp′TiCl2[1,3‐R2(CHN)2C?N] [Cp′ = Cp ( 1 ), tBuC5H4 ( 2 ); R = tBu ( a ), 2,6‐iPr2C6H3 ( b )], have been explored in the presence of methylaluminoxane (MAO) cocatalyst. Complex 1a exhibited remarkable catalytic activity with better NBE incorporation, affording high‐molecular‐weight copolymers with uniform molecular weight distributions, whereas the tert‐BuC5H4 analog ( 2a ) showed low activity, and the resultant polymer prepared by the Cp‐2,6‐diisopropylphenyl analog ( 1b ) possessed broad molecular weight distribution. The microstructure analysis of the poly(ethylene‐co‐NBE)s prepared by 1a suggests the formation of random copolymers including two and three NBE repeating units. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2575–2580  相似文献   

7.
The title compound, 8,15,28,35‐tetra­aza­hepta­cyclo[35.3.1.12,6.117,21.122,26.09,14·029,34]tetraconta‐1(41),2,4,6(42),7,9,11,13,15,17,19,21(43),22,24,26(44),27,29,31,33,35,37,39‐docosaene‐41,42,43,44‐tetrol dimeth­yl sulfoxide tetra­solvate, C40H28N4O4·4C2H6OS, adopts a chair‐shaped C2h symmetric conformation with crystallographically imposed inversion symmetry. Four intra­molecular hydrogen bonds are observed between phenol O and imine N atoms.  相似文献   

8.
Summary: A tandem catalytic system, composed of (η5‐C5H4CMe2C6H5)TiCl3 ( 1 )/MMAO (modified methyl aluminoxane) and [(η5‐C5Me4)SiMe2(tBuN)]TiCl2 ( 2 )/MMAO, was applied for the synthesis of ethylene–hex‐1‐ene copolymers with ethylene as the only monomer stock. During the reaction, 1 /MMAO trimerized ethylene to hex‐1‐ene, while 2 /MMAO copolymerized ethylene with the in situ produced hex‐1‐ene to poly(ethylene–hex‐1‐ene). By changing the catalyst ratio and reaction conditions, a series of copolymer grades with different hex‐1‐ene fractions at high purity were effectively produced.

The overall strategy of the tandem 1 / 2 /MMAO catalytic system.  相似文献   


9.
Treatment of the chlorides (L2,6‐iPr2Ph)2LnCl (L2,6‐iPr2Ph = [(2,6‐iPr2C6H3)NC(Me)CHC(Me)N(C6H5)]?) with 1 equiv. of NaNH(2,6‐iPr2C6H3) afforded the monoamides (L2,6‐iPr2Ph)2LnNH(2,6‐iPr2C6H3) (Ln = Y ( 1 ), Yb ( 2 )) in good yields. Anhydrous LnCl3 reacted with 2 equiv. of NaL2,6‐iPr2Ph in THF, followed by treatment with 1 equiv. of NaNH(2,6‐iPr2C6H3), giving the analogues (L2,6‐iPr2Ph)2LnNH(2,6‐iPr2C6H3) (Ln = Sm ( 3 ), Nd ( 4 )). Two monoamido complexes stabilized by two L2‐Me ligands, (L2‐Me)2LnNH(2,6‐iPr2C6H3) (L2‐Me = [N(2‐MeC6H4)C(Me)]2CH)?; Ln = Y ( 5 ), Yb ( 6 )), were also synthesized by the latter route. Complexes 1 , 2 , 3 , 4 , 5 , 6 were fully characterized, including X‐ray crystal structure analyses. Complexes 1 , 2 , 3 , 4 , 5 , 6 are isostructural. The central metal in each complex is ligated by two β‐diketiminato ligands and one amido group in a distorted trigonal bipyramid. All the complexes were found to be highly active in the ring‐opening polymerization of L‐lactide (L‐LA) and ε‐caprolactone (ε‐CL) to give polymers with relatively narrow molar mass distributions. The activity depends on both the central metal and the ligand (Yb < Y < Sm ≈ Nd and L2‐Me < L2,6‐iPr2Ph). Remarkably, the binary 3/benzyl alcohol (BnOH) system exhibited a striking ‘immortal’ nature and proved able to quantitatively convert 5000 equiv. of L‐LA with up to 100 equiv. of BnOH per metal initiator. All the resulting PLAs showed monomodal, narrow distributions (Mw/Mn = 1.06 ? 1.08), with molar mass (Mn) decreasing proportionally with an increasing amount of BnOH. The binary 4/BnOH system also exhibited an ‘immortal’ nature in the polymerization of ε‐CL in toluene. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Ethylene/styrene copolymerizations using Cp′TiCl2(O‐2,6‐iPr2C6H3) [Cp′ = Cp* (C5Me5, 1 ), 1,2,4‐Me3C5H2 ( 2 ), tert‐BuC5H4 ( 3 )]‐MAO catalyst systems were explored under various conditions. Complexes 2 and 3 exhibited both high catalytic activities (activity: 504–6810 kg‐polymer/mol‐Ti h) and efficient styrene incorporations at 25, 40°C (ethylene 6 atm), affording relatively high molecular weight poly (ethylene‐co‐styrene)s with unimodal molecular weight distributions as well as with uniform styrene distributions (Mw = 6.12–13.6 × 104, Mw/Mn = 1.50–1.71, styrene 31.7–51.9 mol %). By‐productions of syndiotactic polystyrene (SPS) were observed, when the copolymerizations by 1 – 3 ‐MAO catalyst systems were performed at 55, 70 °C (ethylene 6 atm, SPS 9.0–68.9 wt %); the ratios of the copolymer/SPS were affected by the polymerization temperature, the [styrene]/[ethylene] feed molar ratios in the reaction mixture, and by both the cyclopentadienyl fragment (Cp′) and anionic ancillary donor ligand (L) in Cp′TiCl2(L) (L = Cl, O‐2,6‐iPr2C6H3 or N=CtBu2) employed. Co‐presence of the catalytically‐active species for both the copolymerization and the homopolymerization was thus suggested even in the presence of ethylene; the ratios were influenced by various factors (catalyst precursors, temperature, styrene/ethylene feed molar ratio, etc.). © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4162–4174, 2008  相似文献   

11.
The first N‐heterocyclic carbene adducts of arylchlorosilylenes are reported and compared with the homologous germanium compounds. The arylsilicon(II) chlorides SiArCl(Im‐Me4) [Ar=C6H3‐2,6‐Mes2 (Mes=C6H2‐2,4,6‐Me3), C6H3‐2,6‐Trip2 (Trip=C6H2‐2,4,6‐iPr3)] were obtained selectively on dehydrochlorination of the arylchlorosilanes SiArHCl2 with 1,3,4,5‐tetramethylimidazol‐2‐ylidene (Im‐Me4). The analogous arylgermanium(II) chlorides GeArCl(Im‐Me4) were prepared by metathetical exchange of GeCl2(Im‐Me4) with LiC6H3‐2,6‐Mes2 or addition of Im‐Me4 to GeCl(C6H3‐2,6‐Trip2). All compounds were fully characterized. Density functional calculations on ECl(C6H3‐2,6‐Trip2)(Im‐Me4), where E=Si, Ge, at different levels of theory show very good agreement between calculated and experimental bonding parameters, and NBO analyses reveal similar electronic structures of the two aryltetrel(II) chlorides. The low gas‐phase Gibbs free energy of bond dissociation of SiCl(C6H3‐2,6‐Trip2)(Im‐Me4) (Δ${G{{{\circ}\hfill \atop {\rm calcd}\hfill}}}$ =28.1 kJ mol?1) suggests that the carbene adducts SiArCl(Im‐Me4) may be valuable transfer reagents of the arylsilicon(II) chlorides SiArCl.  相似文献   

12.
Two new mononuclear coordination compounds, bis{4‐[(hydroxyimino)methyl]pyridinium} diaquabis(pyridine‐2,5‐dicarboxylato‐κ2N,O2)zincate(II), (C6H7N2O)2[Zn(C7H3NO4)2(H2O)2], (1), and (pyridine‐2,6‐dicarboxylato‐κ3O2,N,O6)bis[N‐(pyridin‐4‐ylmethylidene‐κN)hydroxylamine]zinc(II), [Zn(C7H3NO4)(C6H6N2O)2], (2), have been synthesized and characterized by single‐crystal X‐ray diffractometry. The centrosymmetric ZnII cation in (1) is octahedrally coordinated by two chelating pyridine‐2,5‐dicarboxylate ligands and by two water molecules in a distorted octahedral geometry. In (2), the ZnII cation is coordinated by a tridentate pyridine‐2,6‐dicarboxylate dianion and by two N‐(pyridin‐4‐ylmethylidene)hydroxylamine molecules in a distorted C2‐symmetric trigonal bipyramidal coordination geometry.  相似文献   

13.
The derivatives of pyrimidin‐4‐one can adopt either a 1H‐ or a 3H‐tautomeric form, which affects the hydrogen‐bonding interactions in cocrystals with compounds containing complementary functional groups. In order to study their tautomeric preferences, we crystallized 2,6‐diaminopyrimidin‐4‐one and 2‐amino‐6‐methylpyrimidin‐4‐one. During various crystallization attempts, four structures of 2,6‐diaminopyrimidin‐4‐one were obtained, namely solvent‐free 2,6‐diaminopyrimidin‐4‐one, C4H6N4O, (I), 2,6‐diaminopyrimidin‐4‐one–dimethylformamide–water (3/4/1), C4H6N4O·1.33C3H7NO·0.33H2O, (Ia), 2,6‐diaminopyrimidin‐4‐one dimethylacetamide monosolvate, C4H6N4O·C4H9NO, (Ib), and 2,6‐diaminopyrimidin‐4‐one–N‐methylpyrrolidin‐2‐one (3/2), C4H6N4O·1.5C5H9NO, (Ic). The 2,6‐diaminopyrimidin‐4‐one molecules exist only as 3H‐tautomers. They form ribbons characterized by R22(8) hydrogen‐bonding interactions, which are further connected to form three‐dimensional networks. An intermolecular N—H...N interaction between amine groups is observed only in (I). This might be the reason for the pyramidalization of the amine group. Crystallization experiments on 2‐amino‐6‐methylpyrimidin‐4‐one yielded two isostructural pseudopolymorphs, namely 2‐amino‐6‐methylpyrimidin‐4(3H)‐one–2‐amino‐6‐methylpyrimidin‐4(1H)‐one–dimethylacetamide (1/1/1), C5H7N3O·C5H7N3O·C4H9NO, (IIa), and 2‐amino‐6‐methylpyrimidin‐4(3H)‐one–2‐amino‐6‐methylpyrimidin‐4(1H)‐one–N‐methylpyrrolidin‐2‐one (1/1/1), C5H7N3O·C5H7N3O·C5H9NO, (IIb). In both structures, a 1:1 mixture of 1H‐ and 3H‐tautomers is present, which are linked by three hydrogen bonds similar to a Watson–Crick C–G base pair.  相似文献   

14.
Treatment of N,N‐chelated germylene [(iPr)2NB(N‐2,6‐Me2C6H3)2]Ge ( 1 ) with ferrocenyl alkynes containing carbonyl functionalities, FcC≡CC(O)R, resulted in [2+2+2] cyclization and formation of the respective ferrocenylated 3‐Fc‐4‐C(O)R‐1,2‐digermacyclobut‐3‐enes 2 – 4 [R = Me ( 2 ), OEt ( 3 ) and NMe2 ( 4 )] bearing intact carbonyl substituents. In contrast, the reaction between 1 and PhC(O)C≡CC(O)Ph led to activation of both C≡C and C=O bonds producing bicyclic compound containing two five‐membered 1‐germa‐2‐oxacyclopent‐3‐ene rings sharing one C–C bond, 4,8‐diphenyl‐3,7‐dioxa‐2,6‐digermabicyclo[3.3.0]octa‐4,8‐diene ( 5 ). With N‐methylmaleimide containing an analogous C(O)CH=CHC(O) fragment, germylene 1 reacted under [2+2+2] cyclization involving the C=C double bond, producing 1,2‐digermacyclobutane 6 with unchanged carbonyl moieties. Finally, 1 selectively added to the terminal double bond in allenes CH2=C=CRR′ giving rise to 3‐(=CRR′)‐1,2‐digermacyclobutanes [R/R′ = Me/Me ( 7 ), H/OMe ( 8 )] bearing an exo‐C=C double bond. All compounds were characterized by 1H, 13C{1H} NMR, IR and Raman spectroscopy and the molecular structures of 3 , 4 , 5 , and 8 were established by single‐crystal X‐ray diffraction analysis. The redox behavior of ferrocenylated derivatives 2 – 4 was studied by cyclic voltammetry.  相似文献   

15.
Our attempts to synthesize the N→Si intramolecularly coordinated organosilanes Ph2L1SiH ( 1 a ), PhL1SiH2 ( 2 a ), Ph2L2SiH ( 3 a ), and PhL2SiH2 ( 4 a ) containing a CH?N imine group (in which L1 is the C,N‐chelating ligand {2‐[CH?N(C6H3‐2,6‐iPr2)]C6H4}? and L2 is {2‐[CH?N(tBu)]C6H4}?) yielded 1‐[2,6‐bis(diisopropyl)phenyl]‐2,2‐diphenyl‐1‐aza‐silole ( 1 ), 1‐[2,6‐bis(diisopropyl)phenyl]‐2‐phenyl‐2‐hydrido‐1‐aza‐silole ( 2 ), 1‐tert‐butyl‐2,2‐diphenyl‐1‐aza‐silole ( 3 ), and 1‐tert‐butyl‐2‐phenyl‐2‐hydrido‐1‐aza‐silole ( 4 ), respectively. Isolated organosilicon amides 1 – 4 are an outcome of the spontaneous hydrosilylation of the CH?N imine moiety induced by N→Si intramolecular coordination. Compounds 1–4 were characterized by NMR spectroscopy and X‐ray diffraction analysis. The geometries of organosilanes 1 a – 4 a and their corresponding hydrosilylated products 1 – 4 were optimized and fully characterized at the B3LYP/6‐31++G(d,p) level of theory. The molecular structure determination of 1 – 3 suggested the presence of a Si?N double bond. Natural bond orbital (NBO) analysis, however, shows a very strong donor–acceptor interaction between the lone pair of the nitrogen atom and the formal empty p orbital on the silicon and therefore, the calculations show that the Si?N bond is highly polarized pointing to a predominantly zwitterionic Si+N? bond in 1 – 4 . Since compounds 1 – 4 are hydrosilylated products of 1 a – 4 a , the free energies (ΔG298), enthalpies (ΔH298), and entropies (ΔH298) were computed for the hydrosilylation reaction of 1 a – 4 a with both B3LYP and B3LYP‐D methods. On the basis of the very negative ΔG298 values, the hydrosilylation reaction is highly exergonic and compounds 1 a – 4 a are spontaneously transformed into 1 – 4 in the absence of a catalyst.  相似文献   

16.
A series of new bis(indenyl) zirconium diaryloxides of general formula Ind2Zr(OL)2 (L = C6H5, 2 ; C6F5, 3 ; 2,6‐Me2C6H3, 4; 2,4,6‐Me3C6H2, 5 ; 4‐tBuC6H4, 6 ) were synthesized by a metathesis reaction of Ind2ZrCl2 ( 1 ) with the appropriate thallium aryloxide salt, TlOL. The complexes 1–6 were characterized by 1H and 13C NMR techniques. They were also examined as catalysts for ethene and 1‐hexene polymerization with methylalumoxane as co‐catalyst, and a trend of the polymerization activity as a function of aryloxide ligands was observed. An interpretation of this trend, considering both the electronic and steric effects of the substituents on the aryloxide rings, was proposed. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

17.
The N,N‐diaryliminoacenaphthenes, 1,2‐[2,4‐{(4‐FC6H4)2CH}2‐6‐MeC6H4N]2‐C2C10H6 ( L1 ) and 1‐[2,4‐{(4‐FC6H4)2CH}2‐6‐MeC6H4N]‐2‐(ArN)C2C10H6 (Ar = 2,6‐Me2C6H3 L2 , 2,6‐Et2C6H3 L3 , 2,6‐i‐Pr2C6H3 L4 , 2,4,6‐Me3C6H2 L5 , 2,6‐Et2‐4‐MeC6H2 L6 ), incorporating at least one N ?2,4‐bis(difluoro benzhydryl)‐6‐methylphenyl group, have been synthesized and fully characterized. Interaction of L1 – L6 with (DME)NiBr2 (DME = 1,2‐dimethoxyethane) generates the corresponding nickel(II) bromide N,N‐chelates, L NiBr2 ( 1 – 6 ), in high yield. The molecular structures of 3 and 6 reveal distorted tetrahedral geometries at nickel with the ortho‐substituted difluorobenzhydryl group providing enhanced steric protection to only one side of the metal center. On activation with various aluminum alkyl co‐catalysts, such as methylaluminoxane (MAO) or Et2AlCl, 1 – 6 displayed outstanding activity toward ethylene polymerization (up to 1.02 × 107 g of PE (mol of Ni)?1 h?1). Notably 1 , bearing equivalent fluorobenzhydryl‐substituted N‐aryl groups, was able in the presence of Et2AlCl to couple high activity with exceptional thermal stability generating high molecular weight branched polyethylenes at temperatures as high as 100 °C. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 1971–1983  相似文献   

18.
In the title compound, [Co(C6H15N3)(C7H15N2S)]S2O6·H2O, the Co—C bond distance is 1.9930 (13) Å, which is shorter than for related compounds with the linear 1,6‐di­amino‐3‐thia­hexan‐4‐ide anion in place of the macrocyclic 1‐thia‐4,7‐diazacyclo­decan‐8‐ide anion. The coordinated carbanion produces an elongation of 0.102 (7) Å of the Co—N bond to the 1,4,7‐tri­aza­cyclo­nonane N atom in the trans position. This relatively small trans influence is presumably a result of the tri­amine ligand forming strong bonds to the CoIII atom.  相似文献   

19.
One‐electron reduction of C2‐arylated 1,3‐imidazoli(ni)um salts (IPrAr)Br (Ar=Ph, 3 a ; 4‐DMP, 3 b ; 4‐DMP=4‐Me2NC6H4) and (SIPrAr)I (Ar=Ph, 4 a ; 4‐Tol, 4 b ) derived from classical NHCs (IPr=:C{N(2,6‐iPr2C6H3)}2CHCH, 1 ; SIPr=:C{N(2,6‐iPr2C6H3)}2CH2CH2, 2 ) gave radicals [(IPrAr)]. (Ar=Ph, 5 a ; 4‐DMP, 5 b ) and [(SIPrAr)]. (Ar=Ph, 6 a ; 4‐Tol, 6 b ). Each of 5 a , b and 6 a , b exhibited a doublet EPR signal, a characteristic of monoradical species. The first solid‐state characterization of NHC‐derived carbon‐centered radicals 6 a , b by single‐crystal X‐ray diffraction is reported. DFT calculations indicate that the unpaired electron is mainly located at the original carbene carbon atom and stabilized by partial delocalization over the adjacent aryl group.  相似文献   

20.
We report here the synthesis of new C,N‐chelated chlorostannylenes and germylenes L3MCl (M=Sn( 1 ), Ge ( 2 )) and L4MCl (M=Sn( 3 ), Ge ( 4 )) containing sterically demanding C,N‐chelating ligands L3, 4 (L3=[2,4‐di‐tBu‐6‐(Et2NCH2)C6H2]?; L4=[2,4‐di‐tBu‐6‐{(C6H3‐2′,6′‐iPr2)N=CH}C6H2]?). Reductions of 1 – 4 yielded three‐coordinate C,N‐chelated distannynes and digermynes [L3, 4M ]2 for the first time ( 5 : L3, M=Sn, 6 : L3, M=Ge, 7 : L4, M=Sn, 8 : L4, M=Ge). For comparison, the four‐coordinate distannyne [L5Sn]2 ( 10 ) stabilized by N,C,N‐chelate L5 (L5=[2,6‐{(C6H3‐2′,6′‐Me2)N?CH}2C6H3]?) was prepared by the reduction of chlorostannylene L5SnCl ( 9 ). Hence, we highlight the role of donor‐driven stabilization of tetrynes. Compounds 1 – 10 were characterized by means of elemental analysis, NMR spectroscopy, and in the case of 1 , 2 , 5 – 7 , and 10 , also by single‐crystal X‐ray diffraction analysis. The bonding situation in either three‐ or four‐coordinate distannynes 5 , 7 , and 10 was evaluated by DFT calculations. DFT calculations were also used to compare the nature of the metal–metal bond in three‐coordinate C,N‐chelating distannyne [L3Sn]2 ( 5 ) and related digermyme [L3Ge]2 ( 6 ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号