首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Immobilized sulfuric acid on magnetic Fe3O4 nanoparticles (Fe3O4 MNPs‐OSO3H) as a new solid acid nanocomposite was successfully synthesized and its catalytic activity in a series of condensation reactions was studied. High catalytic activity, simple separation from reaction mixture by an external magnet and good reusability are several eco‐friendly advantages of this catalytic system. It is noteworthy that this catalytic system is applicable to a wide range of spectrum of aromatic aldehydes, and the desired products were obtained in good to excellent yields under mild conditions. The use of ecofriendly solvents makes also this synthetic protocol ideal and fascinating from the environmental point of view.  相似文献   

2.
The preparation of palladium nanoparticles supported on acetylacetone‐modified silica gel and their catalytic application for Heck olefination of aryl halides were investigated. The catalyst was characterized using X‐ray diffraction, X‐ray photoelectron spectroscopy, and transmission and scanning electron microscopies. The supported palladium nanoparticles are demonstrated to be a highly active and reusable catalyst for the Heck reaction. Several reaction parameters, including type and amount of solvent and base, were evaluated. The heterogeneity of the catalytic system was investigated with results indicating that there is a slight palladium leaching into the reaction solution under the applied reaction conditions. Despite this metal leaching, the catalyst can be reused nine times without significant loss of catalytic activity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
The surface of Fe3O4@SiO2 nanoparticles was modified using l ‐arginine as a green and available amino acid to trap palladium nanoparticles through a strong interaction between the metal nanoparticles and functional groups of the amino acid. The proposed green synthetic method takes advantage of nontoxic reagents through a simple procedure. Characterization of Fe3O4@SiO2@l ‐arginine@Pd(0) was done using Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, X‐ray diffraction, vibrating sample magnetometry and inductively coupled plasma analysis. The catalytic activity of Fe3O4@SiO2@l ‐arginine@Pd(0) as a new nanocatalyst was investigated in C – C coupling reactions. Waste‐free, use of green medium, efficient synthesis leading to high yield of products, eco‐friendly and economic catalyst, excellent reusability of the nanocatalyst and short reaction time are the main advantages of the method presented. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
Boehmite nanoparticles were prepared by a simple and inexpensive procedure in water using commercially available materials without inert atmosphere. Then, the surface of the boehmite nanoparticles was modified using 3‐mercaptopropyltrimethoxysilane and subsequently zirconium oxide was supported on the modified surface. Zirconium oxide supported on boehmite nanoparticles (Pr.S‐ZrO@boehmite) was characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis and inductively coupled plasma technique. The catalytic application of Pr.S‐ZrO@boehmite was studied in C–O and C–S coupling reactions for synthesis of valuable compounds such as ether and sulfide derivatives. All products were obtained in good to excellent yields and the catalyst could be recovered and reused several times without significant loss of catalytic efficiency. Furthermore, zirconium oxide is rarely used as catalyst for cross‐coupling reactions.  相似文献   

5.
A boehmite@tryptophan‐Pd nanoparticulate catalyst was prepared by a simple, fast and convenient route. The nanomaterial was characterized using various techniques and employed as a thermally stable catalyst for Heck, Stille and Suzuki cross‐coupling reactions. Optimized conditions for these reactions are described. The catalyst could be isolated, post‐reaction, by simple filtration and recycled for several consecutive cycles without a notable change in its activity.  相似文献   

6.
A moisture‐ and air‐stable heterogenized palladium catalyst was synthesized by coordination of palladium with S‐propyl‐2‐aminothiobenzamide supported on Fe3O4 magnetic nanoparticles. The prepared nanocatalyst was characterized using Fourier transform infrared, energy‐dispersive X‐ray and inductively coupled plasma atomic emission spectroscopies, X‐ray diffraction, vibrating sample magnetometry, transmission and scanning electron microscopies, dynamic laser scattering and thermogravimetric analysis. This catalyst could be dispersed homogeneously in water or poly(ethylene glycol) and further applied as an excellent nano‐organometal catalyst for Suzuki and Heck reactions. The catalyst was easily separated with the assistance of an external magnet from the reaction mixture and reused for several consecutive runs without significant loss of its catalytic efficiency or palladium leaching. The leaching of catalyst was examined using hot filtration and inductively coupled plasma atomic emission spectroscopy. Also, the effects of various reaction parameters on the Suzuki and Heck reactions are discussed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
A Schiff base complex of palladium anchored on Fe3O4 magnetic nanoparticles as an efficient and magnetically reusable nanocatalyst is reported for C? C bond formation through Heck and Suzuki reactions. The catalyst was easily recovered and reused several times without significant loss of its catalytic efficiency or palladium leaching. The magnetic nanocatalyst was characterized using Fourier transform infrared and inductively coupled plasma atomic emission spectroscopies, thermogravimetric analysis, vibrating sample magnetometry, and transmission and scanning electron microscopies. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
Biochar is a stable and carbon‐rich solid which has a high density of carbonyl, hydroxyl and carboxylic acid functional groups on its surface. In this work, the surface of biochar nanoparticles (BNPs) was modified with 3‐choloropropyltrimtoxysilane and further 2‐(thiophen‐2‐yl)‐1H‐benzo[d]imidazole was anchored on its surface. Then, palladium nanoparticles were fabricated on the surface of the modified BNPs and further the catalytic application was studied as recyclable biocatalyst in carbon–carbon coupling reactions such as Suzuki–Miyaura and Heck–Mizoroki cross‐coupling reactions. The structure of the catalyst was characterized using scanning electron microscopy, transmission electron microscopy, energy‐dispersive X‐ray spectroscopy, thermogravimetric analysis, X‐ray diffraction and atomic absorption spectroscopy. The catalyst can be reused several times without a decrease in its catalytic efficiency. In addition to the several advantages reported, application of biochar as catalyst support for the first time is a major novelty of the present work.  相似文献   

9.
In this work, L-lysine-Pd Complex, immobilized onto the surface of Fe3O4 MNPs, was successfully prepared via simple and inexpensive procedure. The prepared nanocatalyst was considered as a robust and clean nano-reactor catalyst for the Suzuki and Heck C-C Cross-Coupling reactions in water as the green condition. This eco-friendly heterogeneous catalyst was characterized by Fourier transform infrared spectroscopy (FT-IR), X-Ray Diffractometer (XRD), energy-dispersive X-ray spectroscopy (EDS), inductively coupled plasma atomic emission spectroscopy (ICP), X-ray mapping, BET, thermogravimetric analysis (TGA), vibrating sample magnetometer (VSM), scanning electron microscopy (SEM) and Transmission electron microscopy (TEM) techniques. The use of a green medium, easy separation and workup, excellent reusability of the nanocatalyst and short reaction time are some outstanding advantages of this method.  相似文献   

10.
Tribenzylammonium tribromide supported onto magnetic nanoparticles (Br3‐TBA‐Fe3O4) as a bromine source was successfully synthesized and characterized using Fourier transform infrared spectroscopy, thermogravimetric analysis, X‐ray diffraction, scanning electron microscopy, energy‐dispersive X‐ray spectroscopy and vibrating sample magnetometry. The synthesized catalyst is shown to be a versatile and highly efficient heterogeneous catalyst for the Knoevenagel condensation and synthesis of 2,3‐dihydroquinazolin‐4(1H )‐one and polyhydroquinoline derivatives. To the best of the authors' knowledge, this is the first report of the use of a bromine source immobilized on Fe3O4 nanoparticles as a magnetically separable catalyst for these reactions. The nanosolid catalyst can be magnetically recovered and reused readily several times without significant loss in catalytic efficiency.  相似文献   

11.
We describe the synthesis of a novel Fe3O4/amidoxime (AO)/Pd nanocatalyst by grafting of AO groups on Fe3O4 nanoparticles and subsequent deposition of Pd nanoparticles. Prior to grafting of AO, the 2‐cyanoethyl‐functionalized Fe3O4 nanoparticles prepared through combining 2‐cyanoethyltriethoxysilane and Fe3O4 were treated with hydroxylamine. The AO‐grafted Fe3O4 nanoparticles were then used as a platform for the deposition of Pd nanoparticles. The catalyst was characterized using Fourier transform infrared spectroscopy, X‐ray diffraction, scanning and transmission electron microscopies, vibrating sample magnetometry, wavelength‐ and energy‐dispersive X‐ray spectroscopies and inductively coupled plasma analysis. Fe3O4/AO/Pd is novel phosphine‐free recyclable heterogeneous catalyst for Sonogashira reactions. Interestingly, the novel catalyst could be recovered in a facile manner from the reaction mixture by applying an external magnet device and recycled seven times without any significant loss in activity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Fe3O4 magnetic nanoparticles (MNPs) were obtained using a reduction–precipitation method. These MNPs were modified with cysteamine hydrochloride. This catalyst was characterized using a number of physicochemical measurements. The Fe3O4–cysteamine MNPs, as an efficient and heterogeneous catalyst, were successfully used for Knoevenagel condensation under mild conditions. The activity of this nanomagnetic catalyst in the Knoevenagel condensation of aromatic aldehydes and malononitrile is described. Easy preparation of the catalyst, easy work‐up procedure, excellent yields and short reaction times are some of the advantages.  相似文献   

13.
In this paper, we report a simple, facile and efficient method for the synthesis of Fe3O4/SiO2‐DTZ‐Pd. The immobilized palladium was an efficient catalyst without addition of phosphine ligands for Stille, Heck and N‐arylation reactions. This method has some advantages such as high yields and easy work up of products. In addition, the catalyst can be recovered using a magnet and reused several times without significant loss of its catalytic activity. This catalyst was characterized by various physico‐chemical techniques such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), X‐ray diffraction (XRD) and inductively coupled plasma (ICP).  相似文献   

14.
A novel and task‐specific nano‐magnetic Schiff base ligand with phosphate spacer using 2‐aminoethyl dihydrogen phosphate instead of usual coating agents, i.e. tetraethoxysilane and 3‐aminopropyltriethoxysilane, for coating of nano‐magnetic Fe3O4 is introduced. The nano‐magnetic Schiff base ligand with phosphate spacer as a novel catalyst was synthesized and fully characterized using infrared spectroscopy, X‐ray diffraction, scanning and transmission electron microscopies, thermogravimetry, derivative thermogravimetry, vibrating sample magnetometry, atomic force microscopy, X‐ray photoelectron spectroscopy and energy‐dispersive X‐ray spectroscopy. The resulting task‐specific nano‐magnetic Schiff base ligand with phosphate spacer was successfully employed as a magnetite Pd nanoparticle‐supported catalyst for Sonogashira and Mizoroki–Heck C–C coupling reactions. To the best of our knowledge, this is the first report of the synthesis and applications of magnetic nanoparticles of Fe3O4@O2PO2(CH2)2NH2 as a suitable spacer for the preparation of a designable Schiff base ligand and its corresponding Pd complex. So the present work can open up a new and promising insight in the course of rational design, synthesis and applications of various task‐specific magnetic nanoparticle complexes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Polyamidoamine (PAMAM) is one of the most interesting types of hyperbranched polymers that carry a large number of amino groups on its surface. PAMAM has gained significant attention from synthetic organic chemists due to its structural characteristics, controllable structure, inner porosity, and ability to trap a wide range of ions and molecules. So, in this work, the PAMAM dendrimer was synthesized, grafted onto the surface of magnetite nanoparticles, and the resulting hybrid nanoparticles were then employed as suitable host for immobilizing cobalt nanoparticles. The newly developed catalyst was well characterized by Fourier transform‐infrared, X‐ray diffraction, thermogravimetric analysis, field emission‐scanning electron microscopy, transmission electron microscopy, atomic absorption spectroscopy, element mapping and energy‐dispersive X‐ray analysis. The efficiency of the as‐prepared nanocatalyst was evaluated for the Mizoroki–Heck cross‐coupling reactions. The MNP@PAMAM‐Co represented perfect catalytic efficiency and high selectivity for the Mizoroki–Heck cross‐coupling reaction compared with previously reported catalysts. The catalyst separation from the reaction mixture was easily achieved with the assistance of an external magnetic field, and its recycling was also investigated for five consecutive runs. Hot filtration confirmed no leaching of the active metal during the Heck coupling.  相似文献   

16.
Cu(II)–Schiff base complex‐functionalized magnetic Fe3O4 nanoparticles were prepared and characterized using Fourier transform infrared spectroscopy, thermogravimetric analysis and scanning electron microscopy techniques. This compound acts as a highly active and selective catalyst for the oxidation of sulfides and thiols. These reactions can be carried out in ethanol or solvent‐free conditions in the presence of hydrogen peroxide with complete selectivity and very high conversion under mild reaction conditions. The designed catalytic system prevents effectively the over‐oxidation of sulfides to sulfones. Separation and recycling can also be easily done using a simple magnetic separation process. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
A new nanocatalyst was synthesized by immobilization of 4′‐(4‐hydroxyphenyl)‐2,2′:6′,2″‐terpyridine/CuI complex on ferromagnetic nanoparticles through a surface modification (FMNPs@SiO2‐TPy‐Cu). This heterogeneous catalyst was characterized using various techniques including Fourier transform infrared and energy‐dispersive X‐ray spectroscopies, transmission and scanning electron microscopies, X‐ray diffraction, vibrating sample magnetometry and thermogravimetric analysis. The resulting nanocatalyst presented excellent catalytic activity for the regioselective syntheses of 1,4‐disubstituted 1,2,3‐triazoles and thioethers. The thermally and chemically stable, benign and economical catalyst was easily recovered using an external magnet and reused in at least five successive runs without an appreciable loss of activity.  相似文献   

18.
Poly(N‐isopropylacrylamide)–halloysite (PNIPAM‐HNT) nanocomposites exhibited inverse temperature solubility with a lower critical solution temperature (LCST) in water. Palladium (Pd) nanoparticles were anchored on PNIPAM‐HNT nanocomposites with various amounts of HNT from 5 to 30 wt%. These Pd catalysts exhibited excellent reactivities for Suzuki–Miyaura coupling reactions at 50–70 °C in water. In particular, Pd anchored PNIPAM/HNT (95:5 w/w ratio) nanocomposites showed excellent recyclability up to 10 times in 96% average yield by simple filtration. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
The preparation of Ni@Pd core–shell nanoparticles immobilized on yolk–shell Fe3O4@polyaniline composites is reported. Fe3O4 nanoclusters were first synthesized through the solvothermal method and then the SiO2 shell was coated on the Fe3O4 surface via a sol–gel process. To prepare Fe3O4@SiO2@polyaniline composites, polyvinylpyrrolidone was first grafted on to the surface of Fe3O4@SiO2 composites and subsequently polymerization of aniline was carried out via an ultrasound‐assisted in situ surface polymerization method. Selective etching of the middle SiO2 layer was then accomplished to obtain the yolk–shell Fe3O4@polyaniline composites. The approach uses polyaniline (PANI) conductive polymer as a template for the synthesis of Ni@Pd core–shell nanoparticles. The catalytic activity of the synthesized yolk–shell Fe3O4@PANI/Ni@Pd composite was investigated in the reduction of o‐nitroaniline to benzenediamine by NaBH4, which exhibited conversion of 99% in 3 min with a very low content of the catalyst. Transmission electron microscopy, X‐ray photoelectron spectroscopy, TGA, X‐ray diffraction, UV–visible, scanning electron microscopy, X‐ray energy dispersion spectroscopy and FT‐IR were employed to characterize the synthesized nanocatalyst. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
A hybrid material of palladium supported on diaminoglyoxime‐functionalized Fe3O4 was used as an effective and recyclable catalyst in Mizoroki–Heck coupling reactions. The catalyst was very effective for the Mizoroki–Heck reaction of aryl halides with styrene and conversion was in most cases excellent. The yields of the products were in the range 75–98%. The catalyst showed good stability and could be recovered and reused for six reaction cycles without significant leaching and loss its catalytic activity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号