首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Many sophisticated chemical and physical properties of porous materials strongly rely on the presence of the metal ions within the structures. Whereas homogeneous distribution of metals is conveniently realized in metal–organic frameworks (MOFs), the limited stability potentially restricts their practical implementation. From that perspective, the development of metal–covalent organic frameworks (MCOFs) may address these shortcomings by incorporating active metal species atop highly stable COF backbones. This Minireview highlights examples of MCOFs that tackle important issues from their design, synthesis, characterization to cutting‐edge applications.  相似文献   

5.
Following the previous Part on the mechanisms of chiral recognition in pharmacology, the road was open to cover one aspect of stereoselectivity that had been evoked in Part 5 but not discussed explicitly, namely the pharmacological significance of the conformational behavior of active molecules. There, we saw how ligands and binding sites adapt to each other, but these results were not related explicitly to the conformational behavior of the ligand. The focus of the present Part is to use a few well‐known drugs, examine their conformational behavior, compare the 3D geometry of probable conformers with rigid analogs acting at the same receptor, and reflect on the concept of ‘active conformation’.  相似文献   

6.
This review continues a general presentation of the principles of stereochemistry with special reference to the medicinal sciences. Here, we discuss and illustrate molecular and clinical phenomena of stereoselectivity in pharmacological effects, namely activity differences between stereoisomers, principally enantiomers. The review begins with didactic models of chiral recognition, with a main focus on the early model of Easson and Stedman. There follows a Molecular Modeling (MM) and Molecular Dynamics (MD) depiction of the differential interaction of the enantiomers of hyoscyamine with cholinergic muscarinic receptors. The next section is devoted to various rationalizations in stereoselective pharmacological activity, e.g., the influence of optical purity on enantioselectivity, Pfeiffer's rule, and eudismic analysis. The review ends with selected examples taken from various fields of preclinical and clinical pharmacology, of differences between stereoisomers in terms of drug absorption, distribution, and excretion. The influence of conformational factor in molecular pharmacology will be discussed in Part 6, while stereoselective aspects of xenobiotic metabolism will be reviewed in Parts 7 and 8.  相似文献   

7.
8.
In recent years, metal–organic frameworks (MOFs) have become an area of intense research interest because of their adjustable pores and nearly limitless structural diversity deriving from the design of different organic linkers and metal structural building units (SBUs). Among the recent great challenges for scientists include switchable MOFs and their corresponding applications. Switchable MOFs are a type of smart material that undergo distinct, reversible, chemical changes in their structure upon exposure to external stimuli, yielding interesting technological applicability. Although the process of switching shares similarities with flexibility, very limited studies have been devoted specifically to switching, while a fairly large amount of research and a number of Reviews have covered flexibility in MOFs. This Review focuses on the properties and general design of switchable MOFs. The switching activity has been delineated based on the cause of the switching: light, spin crossover (SCO), redox, temperature, and wettability.  相似文献   

9.
Materials that can recognize the changes in their local environment and respond by altering their inherent physical and/or chemical properties are strong candidates for future “smart” technology materials. Metal–organic frameworks (MOFs) have attracted a great deal of attention in recent years owing to their designable architecture, host–guest chemistry, and softness as porous materials. Despite this fact, studies on the tuning of the properties of MOFs by external stimuli are still rare. This review highlights the recent developments in the field of stimulus‐responsive MOFs or so‐called smart MOFs. In particular, the various stimuli used and the utility of stimulus‐responsive smart MOFs for various applications such as gas storage and separation, sensing, clean energy, catalysis, molecular motors, and biomedical applications are highlighted by using representative examples. Future directions in the developments of stimulus‐responsive smart MOFs and their applications are proposed from a personal perspective.  相似文献   

10.
Defect engineering in metal–organic frameworks (MOFs) is an exciting concept for tailoring material properties, which opens up novel opportunities not only in sorption and catalysis, but also in controlling more challenging physical characteristics such as band gap as well as magnetic and electrical/conductive properties. It is challenging to structurally characterize the inherent or intentionally created defects of various types, and there have so far been few efforts to comprehensively discuss these issues. Based on selected reports spanning the last decades, this Review closes that gap by providing both a concise overview of defects in MOFs, or more broadly coordination network compounds (CNCs), including their classification and characterization, together with the (potential) applications of defective CNCs/MOFs. Moreover, we will highlight important aspects of “defect‐engineering” concepts applied for CNCs, also in comparison with relevant solid materials such as zeolites or COFs. Finally, we discuss the future potential of defect‐engineered CNCs.  相似文献   

11.
Metal‐organic frameworks (MOFs) are an emerging class of porous materials with attractive properties, however, their practical applications are heavily hindered by their fragile nature. We report herein an effective strategy to transform fragile coordination bonds in MOFs into stable covalent organic bonds under mild annealing decarboxylative coupling reaction conditions, which results in highly stable organic framework materials. This strategy successfully endows intrinsic framework skeletons, porosity and properties of the parent MOFs in the daughter organic framework materials, which exhibit excellent chemical stability under harsh catalytic conditions. Therefore, this work opens a new avenue to synthesize stable organic framework materials derived from MOFs for applications in different fields.  相似文献   

12.
A porous metal–organic framework, Mn(H3O)[(Mn4Cl)3(hmtt)8] (POST‐65), was prepared by the reaction of 5,5′,10,10′,15,15′‐hexamethyltruxene‐2,7,12‐tricarboxylic acid (H3hmtt) with MnCl2 under solvothermal conditions. POST‐65(Mn) was subjected to post‐synthetic modification with Fe, Co, Ni, and Cu according to an ion‐exchange method that resulted in the formation of three isomorphous frameworks, POST‐65(Co/Ni/Cu), as well as a new framework, POST‐65(Fe). The ion‐exchanged samples could not be prepared by regular solvothermal reactions. The complete exchange of the metal ions and retention of the framework structure were verified by inductively coupled plasma–atomic emission spectrometry (ICP‐AES), powder X‐ray diffraction (PXRD), and Brunauer–Emmett–Teller (BET) surface‐area analysis. Single‐crystal X‐ray diffractions studies revealed a single‐crystal‐to‐single‐crystal (SCSC)‐transformation nature of the ion‐exchange process. Hydrogen‐sorption and magnetization measurements showed metal‐specific properties of POST‐65.  相似文献   

13.
Herein, we reported the designed synthesis of three isostructural three‐dimensional covalent organic frameworks (3D COFs) with ‐H, ‐Me, or ‐F substituents, which have similar crystallinity and topology. Their crystal structures were determined by continuous rotation electron diffraction (cRED), and all three 3D COFs were found to adopt a fivefold interpenetrated pts topology. More importantly, the resolution of these cRED datasets reached up to 0.9–1.0 Å, enabling the localization of all non‐hydrogen atomic positions in a COF framework directly by 3D ED techniques for the first time. In addition, the precise control of the pore environments through the use of different functional groups led to different selectivities for CO2 over N2. We have thus confirmed that polycrystalline COFs can be definitely studied to the atomic level as other materials, and this study should also inspire the design and synthesis of 3D COFs with tailored pore environments for interesting applications.  相似文献   

14.
Owing to their outstanding structural, chemical, and functional diversity, metal–organic frameworks (MOFs) have attracted considerable attention over the last two decades in a variety of energy‐related applications. Notably missing among these, until recently, were applications that required good charge transport coexisting with porosity and high surface area. Although most MOFs are electrical insulators, several materials in this class have recently demonstrated excellent electrical conductivity and high charge mobility. Herein we review the synthetic and electronic design strategies that have been employed thus far for producing frameworks with permanent porosity and long‐range charge transport properties. In addition, key experiments that have been employed to demonstrate electrical transport, as well as selected applications for this subclass of MOFs, will be discussed.  相似文献   

15.
We present a systematic study of metal–organic frameworks (MOFs) for the storage of oxygen. The study starts with grand canonical Monte Carlo simulations on a suite of 10 000 MOFs for the adsorption of oxygen. From these data, the MOFs were down selected to the prime candidates of HKUST‐1 (Cu‐BTC) and NU‐125, both with coordinatively unsaturated Cu sites. Oxygen isotherms up to 30 bar were measured at multiple temperatures to determine the isosteric heat of adsorption for oxygen on each MOF by fitting to a Toth isotherm model. High pressure (up to 140 bar) oxygen isotherms were measured for HKUST‐1 and NU‐125 to determine the working capacity of each MOF. Compared to the zeolite NaX and Norit activated carbon, NU‐125 has an increased excess capacity for oxygen of 237 % and 98 %, respectively. These materials could ultimately prove useful for oxygen storage in medical, military, and aerospace applications.  相似文献   

16.
The solvent‐free mechanical milling process for two distinct metal–organic framework (MOF) crystals induced the formation of a solid solution, which is not feasible by conventional solution‐based syntheses. X‐ray and STEM‐EDX studies revealed that performing mechanical milling under an Ar atmosphere promotes the high diffusivity of each metal ion in an amorphous solid matrix; the amorphous state turns into the porous crystalline structure by vapor exposure treatment to form a new phase of a MOF solid solution.  相似文献   

17.
18.
Understanding the driving forces controlling crystallization is essential for the efficient synthesis and design of new materials, particularly metal–organic frameworks (MOFs), where mild solvothermal synthesis often allows access to various phases from the same reagents. Using high‐energy in situ synchrotron X‐ray powder diffraction, we monitor the crystallization of lithium tartrate MOFs, observing the successive crystallization and dissolution of three competing phases in one reaction. By determining rate constants and activation energies, we fully quantify the reaction energy landscape, gaining important predictive power for the choice of reaction conditions. Different reaction rates are explained by the structural relationships between the products and the reactants; larger changes in conformation result in higher activation energies. The methods we demonstrate can easily be applied to other materials, opening the door to a greater understanding of crystallization in general.  相似文献   

19.
Hollow metal–organic frameworks (MOFs) are promising materials with sophisticated structures, such as multiple shells, that cannot only enhance the properties of MOFs but also endow them with new functions. Herein, we show a rational strategy to fabricate multi‐shelled hollow chromium (III) terephthalate MOFs (MIL‐101) with single‐crystalline shells through step‐by‐step crystal growth and subsequent etching processes. This strategy relies on the creation of inhomogeneous MOF crystals in which the outer layer is chemically more robust than the inner layer and can be selectively etched by acetic acid. The regulation of MOF nucleation and crystallization allows the tailoring of the cavity size and shell thickness of each layer. The resultant multi‐shelled hollow MIL‐101 crystals show significantly enhanced catalytic activity during styrene oxidation. The insight gained from this systematic study will aid in the rational design and synthesis of other multi‐shelled hollow structures and the further expansion of their applications.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号