首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Ferrocene tethered N‐heterocyclic carbene‐copper complex anchored on graphene ([GrFemImi]NHC@Cu complex) has been synthesized by covalent grafting of ferrocenyl ionic liquid in the matrix of graphene followed by metallation with copper (I) iodide. The [GrFemImi]NHC@Cu complex has been characterized by fourier transform infrared (FT‐IR), fourier transform Raman (FT‐Raman), CP‐MAS 13C NMR spectroscopy, transmission electron microscopy (TEM), thermogravimetric analysis (TGA), energy dispersive X‐ray (EDX) analysis, X‐ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET) surface area analysis and X‐ray diffractometer (XRD) analysis. This novel complex served as a robust heterogeneous catalyst for the synthesis of bioactive N‐aryl sulfonamides from variety of aryl boronic acids and sulfonyl azides in ethanol by Chan‐Lam coupling. Recyclability experiments were executed successfully for six consecutive runs.  相似文献   

2.
3‐methyl‐1‐sulfonic acid imidazolium tetrachloroferrate {[Msim]FeCl4} was prepared and fully characterized by fourier transform infrared spectroscopy (FT‐IR), X‐ray diffraction (XRD), thermal gravimetric analysis (TGA), differential thermal gravimetric (DTG), field emission scanning electron microscopy (FESEM), energy dispersive X‐ray analysis (EDX) and vibrating sample magnetometer (VSM) and used, as an efficient catalyst, for the tandem reaction of β‐naphthol with aromatic aldehydes and benzamide at 110 °C under solvent‐free conditions to give 1‐amidoalkyl‐2‐naphthols in high yields and very short reaction times.  相似文献   

3.
Cu ( II ) supported on poly(8‐hydroxyquinoline‐p‐styrenesulfonate) (Cu ( II )@PHQSS) was prepared and fully characterized by the different techniques including fourier transform infrared spectroscopy (FT‐IR), 1H NMR, 13C NMR, thermal gravimetric analysis (TGA), differential thermal gravimetric (DTG), differential thermal analysis (DTA), scanning electron microscope (SEM) and energy dispersive X‐ray analysis (EDS). Afterward, the Cu ( II )@PHQSS as nanostructured catalyst was used as catalyst for the synthesis of hexahydroquinolines.  相似文献   

4.
In this study, dendrimer‐encapsulated Cu(Π) nanoparticles immobilized on superparamagnetic Fe3O4@SiO2 nanoparticles were prepared via a multistep‐synthesis. Then, the synthesized composite was fully characterized by various techniques such as fourier transform infrared (FT‐IR) spectroscopy, X‐ray diffraction (XRD), dynamic light scattering (DLS), UV‐vis spectroscopy, energy dispersive X‐ray analysis (EDX), thermogravimetric analysis (TGA) and vibration sample magnetometer (VSM). From the information gained by FE‐SEM and TEM studies it can be inferred that the particles are mostly spherical in shape and have an average size of 50 nm. Also, the amount of Cu is determined to be 0.51 mmol/g in the catalyst by inductively coupled plasma (ICP) analyzer. This magnetic nano‐compound has been successfully applied as a highly efficient, magnetically recoverable and stable catalyst for N‐arylation of nitrogen heterocycles with aryl halides (I, Br) and arylboronic acids without using external ligands or additives. The catalyst was also employed in a one‐pot, three‐component reaction for the efficient and green synthesis of 5‐substituted 1H‐tetrazoles using various aldehydes, hydroxylamine hydrochloride and sodium azide in water. The magnetic catalyst can be easily separated by an external magnet bar and is recycled seven times without significant loss of its activity.  相似文献   

5.
Nanocellulose (NC) materials have some unique properties, which make them attractive as organic or inorganic supports for catalytic applications. Nanocatalysts with diameters of less than 100 nm are difficult to separate from the reaction mixture, therefore, magnetic nanoparticles (MNPs) were used as catalysts to overcome this problem. Fe3O4@NCs/BF0.2 as a green, bio‐based, eco‐friendly, and recyclable catalyst was synthesized and characterized using fourier‐transform infrared spectroscopy (FT‐IR), vibrating sample magnetometer (VSM), X‐ray diffraction (XRD), X‐ray fluorescence (XRF), Brunauer–Emmett–Teller (BET), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and thermal gravimetric analysis (TGA) techniques. Fe3O4@NCs/BF0.2 was employed for the synthesis of 2,3‐dihydro‐1H‐perimidine derivatives via a reaction of 1,8‐diaminonaphthalene with various aldehydes at room temperature under solvent‐free conditions. The present procedure offers several advantages including a short reaction time, excellent yields, easy separation of catalyst, and environmental friendliness.  相似文献   

6.
《中国化学会会志》2018,65(2):205-211
Zn3(BTC)2 metal‐organic frameworks as recyclable and heterogeneous catalysts were effectively used to catalyze the synthesis of benzimidazole derivatives from o‐phenylendiamine and aldehydes in ethanol. This method provides 2‐aryl‐1H‐benzimidazoles in good to excellent yields with little catalyst loading. The catalyst was characterized using different techniques such as X‐ray diffraction (XRD), energy dispersive X‐ray (EDX) analysis, scanning electron microscopy (SEM), and Fourier transform infrared (FT‐IR) spectroscopy.  相似文献   

7.
A novel complex of PdCl2 with a multidentate cryptand ligand, Kryptofix 5, has been prepared and characterized by various techniques including 1H‐ and 13C NMR spectroscopy, Fourier transform infrared (FT‐IR), Raman, ultraviolet and visible (UV‐VIS) spectroscopy, inductively coupled plasma (ICP), CHN elemental and energy dispersive X‐ray analysis (EDX). This heat‐ and air‐stable complex was utilized as a highly active catalyst for the Mizoroki‐Heck reaction of aryl halides with various olefins. Interestingly, it was found that aryl bromides as well as aryl iodides were efficiently cross‐coupled with terminal alkenes at 130 °C in 10 min. Furthermore, the least reactive aryl chlorides reacted with styrene to obtain the desired products in acceptable yields.  相似文献   

8.
A new nano scale Cu‐MOF has been obtained via post‐synthetic metalation by immersing a Zn‐MOF as a template in DMF solutions of copper(II) salts. The Cu‐MOF serves as recyclable nano‐catalyst for the preparation of 5‐substituted 1H‐tetrazoles via [3 + 2] cycloaddition reaction of various nitriles and sodium azide in a green medium (PEG). The post‐synthetic metalated MOF were characterized by FT‐IR spectroscopy, powder X‐ray diffraction (PXRD), atomic absorption spectroscopy (AAS), and energy dispersive X‐ray spectroscopy (EDX) techniques. The morphology and size of the nano‐catalyst were determined by field emission scanning electron microscopy (FE‐SEM).  相似文献   

9.
《中国化学会会志》2018,65(9):1090-1097
Boronate‐affinity adsorbents have been regarded as favorable extraction adsorbents for the pretreatment of cis‐diol‐containing biomolecules owning to their specific selectivity, but most of them have low adsorption capacity and a tedious synthesis methods. In this study, a new boronate‐affinity material (PGMA@FPBA) with high adsorption capacity was synthesized via a “one‐pot” method based on a low‐cost commercial support. The PGMA@FPBA was characterized by Fourier transform infrared spectroscopy (FT‐IR), X‐ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), and nitrogen adsorption/desorption measurements. The as‐prepared adsorbent showed good selectivity, high adsorption capacity (448 μmol/g for catechol), and fast adsorption equilibration (1 min) for cis‐diol‐containing biomolecules. Subsequently, as an example for application, the obtained PGMA@FPBA was used as a dispersive solid‐phase extraction (d‐SPE) adsorbent for enrichment of quercetin in red wine. The results indicated that the facile‐prepared boronate‐affinity adsorbent has great potential application for separation and enrichment of cis‐diol‐containing biomolecules in complex samples.  相似文献   

10.
In this paper, the electrochemically reduced graphene oxide‐poly(amidoamine) hybrid (ErGO‐PAMAM) have been used for fabrication of TNT electrochemical sensor. The prepared modified electrode is characterized with X‐ray photoelectron spectroscopy (XPS), fourier transform infrared spectroscopy (FT‐IR), electrochemical impedance spectroscopy (EIS), energy‐dispersive X‐ray (EDX) spectroscopy, scanning electron microscopy (SEM) and atomic force microscope (AFM). Based on obtained results, it is can be seen that the ErGO‐PAMAM/GCE has high response to TNT than the other graphene based modified electrodes. The resulting electrochemical sensor exhibited good response to TNT with linear range from 0.05 to 1.2 ppm with a low detection limit of 0.0015 ppm.  相似文献   

11.
There is widespread interest in responsive polymers that show cloud point behavior, but little attention is paid to their solid state thermal properties. To manufacture products based on such polymers, it may be necessary to subject them to high temperatures; hence, it is important to investigate their thermal behavior. In this study, we characterized a family of poly(N‐isopropylacrylamide‐co‐hydroxymethylacrylamide) copolymers. Although poly(N‐isopropylacrylamide) shows very high thermal stability (up to 360 °C), introduction of hydroxy side chains leads to a significant reduction in stability and new degradation processes become apparent. Thermogravimetric analysis and fourier transform infrared spectroscopy (FT‐IR) indicate that the first degradation process involves a chemical dehydration step (110–240 °C), supported by the nonreversing heat flow response in modulated temperature differential scanning calorimetry. Water loss scales with the fraction of hydroxy monomer in the copolymer. Glass transition temperatures (Tg) are higher than the temperatures causing dehydration; hence, these values relate to newly‐formed copolymer structures produced by controlled heating under nitrogen. Fourier transform‐Raman (FT‐Raman) spectra suggest that this transition involves imine formation. The Tg increases as the fraction of hydroxy groups in the original copolymer increases. Further heating leads to degradation and mass loss, and more complex changes in the FT‐IR spectra, consistent with formation of unsaturated species. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

12.
A novel Cu (II) Schiff‐base complex immobilized on core‐shell magnetic Fe3O4 nanoparticles (Fe3O4@SPNC) was successfully designed and synthesized. The structural features of these nanoparticles were studied and confirmed by using various techniques including FT‐IR spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy‐dispersive X‐ray spectroscopy (EDS), vibrating sample magnetometer (VSM), X‐Ray diffraction (XRD), wavelength dispersive X‐ray spectroscopy (WDX), and inductively coupled plasma (ICP). These newly synthesized nanoparticles have been used as efficient heterogeneous catalytic system for one‐pot multicomponent synthesis of new pyrano[2,3‐b]pyridine‐3‐carboxamide derivatives. Notably, the catalyst could be easily separated from the reaction mixture by using an external magnet and reused for several successive reaction runs with no significant loss of activity or copper leaching. The present protocol benefits from a hitherto unreported MNPs‐immobilized Cu (II) Schiff‐base complex as an efficient nanocatalyst for the synthesis of newly reported derivatives of pyrano[2,3‐b]pyridine‐3‐carboxamide from one‐pot multicomponent reactions.  相似文献   

13.
Fe3O4@MCM‐41@Zr‐MNPs modified with piperazine is easily prepared and characterized using Fourier transform infrared spectroscopy (FT‐IR), X‐ray powder diffraction (XRD), N2 adsorption–desorption, Transmission electron microscopy (TEM), Energy‐dispersive X‐ray (EDX), Vibrating sample magnetometry (VSM) and Thermogravimetric analysis (TGA) techniques. The characterization results showed that Zr highly dispersed in the tetrahedral environment of silica framework and piperazine is successfully attached to the surface of the nanocatalyst in connection with zirconium. The prepared nanosized reagent (10–30 nm), shows excellent catalytic activity in the synthesis of tetrahydro‐4H‐chromene and pyrano[2,3‐d]pyrimidinone derivatives. All reactions are performed under mild and completely heterogeneous reactions conditions in high yields during short reaction times. On the other hand and due to its superparamagnetic nature the catalyst can be easily separated by the application of an external magnetic field and reused for several times.  相似文献   

14.
NiAl2O4 spinel nanocrystals were synthesized as mesoporous catalysts and were fully characterized using Fourier‐transform infrared spectroscopy (FT‐IR), X‐ray diffraction patterns (XRD), scanning electron microscopy (SEM), and Energy‐dispersive X‐ray spectroscopy (EDS). These nanocrystals catalyzed the synthesis of 2,3‐dihydroquinazolin‐4(1H)‐one derivatives via a one‐pot, three‐component condensation reaction of aromatic aldehydes, isatoic anhydride, and ammonium acetate or primary aromatic amine under microwave irradiation. By far, the most obvious advantages of the offered process are efficiency and recyclability of the catalyst as well as a significantly shorter reaction time.  相似文献   

15.
An efficient one‐pot method for synthesis of 2,3‐dihydroquinazolin‐4(1H)‐ones and tri/tetra substituted‐1H‐imidazoles has been accomplished in the presence of catalytic amounts of Cu(I)‐1,3‐dimethylbarbituric acid modified SBA‐15 as heterogeneous catalyst with good to excellent yields. The catalyst is reusable and can be applied several times without any decrease in product yield. The synthesized catalyst was characterized by scanning electron microscopy (SEM), X‐ray diffraction (XRD), energy dispersive X‐ray spectroscopy (EDS), thermal gravimetric analysis (TGA), N2 adsorption/desorption isotherms (BET), Fourier transform infrared spectroscopy (FT‐IR) and atomic absorption spectroscopy (AAS).  相似文献   

16.
The ruthenium complex Ru(terpyridine)(2,6‐pyridinedicarboxylate) was successfully grafted onto MCM‐41 using a multi‐step grafting method. The immobilized ruthenium complex was characterized thoroughly using Fourier transform infrared, Raman, UV–visible diffuse reflectance and energy‐dispersive X‐ray spectroscopies, X‐ray diffraction, N2 adsorption, scanning electron microscopy, thermogravimetric analysis and inductively coupled plasma analysis. This immobilized ruthenium complex showed excellent performance in the oxidation of various secondary alcohols to their corresponding ketones with tert‐butyl hydroperoxide as oxidant under solvent‐free conditions, and had the advantages of easy recovery and good reusability. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
In this work, Al‐substituted α‐Co(OH)2/GO composites with supercapacitive properties were prepared by chemical co‐precipitated method in which cobalt nitrate and aluminum nitrate were used as the raw material, and graphite oxide was employed as carrier. The as‐prepared materials were characterized by X‐ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and fourier transform infrared spectroscopy (FT‐IR). Cyclic voltammetry (CV) and galvanostatic charge/discharge measurements showed that the Al‐substituted α‐Co(OH)2/GO electrode material had excellent electrochemical capacitance. The specific capacitance of 1137 F·g−1 was achieved in 6 mol/L KOH solution at a current density of 1 A·g−1 within a potential range of 0–0.5 V. Moreover, only 12% losses of the initial specific capacitance were found after 500 cycles at a current density of 1 A·g−1.  相似文献   

18.
《先进技术聚合物》2018,29(8):2273-2280
Multiresponsive amphiphilic poly(N,N‐dimethylaminoethyl methacrylate)‐b‐poly(N‐isopropylacrylamide) (PDMAEMA‐b‐PNIPAM) was successfully synthesized by reversible addition‐fragmentation chain transfer polymerization. Poly(N,N‐dimethylaminoethyl methacrylate)‐b‐poly(N‐isopropylacrylamide) has thermal and pH stimuli responsiveness. Their lower critical solution temperature and hydrodynamic radius can be adjusted by varying the copolymer composition, block length, solution pH, and temperature. In addition, a convenient method has been established to prepare cross‐linked silica‐coated nanoparticles with PDMAEMA‐b‐PNIPAM micelles as a template, resulting in good organic/inorganic hybrid nanoparticles defined as 175 to 220 nm. The structure and morphology were characterized by proton nuclear magnetic resonance (1HNMR), Fourier‐transform infrared spectroscopy (FT‐IR), transmission electron microscopy (TEM), and transmission electron microscopy‐energy dispersive X‐ray spectroscopy (TEM‐EDS).  相似文献   

19.
By the reaction of 4‐nitrobenzaldehyde with ethyl acetoacetate, malononitrile and hydrazine hydrate, pyranopyrazole derivative as an active biological compound was synthsized and then reacted with salicylaldehyde and MnCl2.4H2O to afford nano‐Mn‐[4‐nitrophenyl‐salicylaldimine‐methyl pyranopyrazole]Cl2 (nano‐[Mn‐4NSMP]Cl2) for the first time. The produced Schiff base complex with nanostructured was fully characterized by Fourier transform infrared spectroscopy (FT‐IR), X‐ray diffraction (XRD), thermal gravimetric analysis (TGA), differential thermal gravimetric (DTG) and scanning electron microscope (SEM) and used it as an efficient catalyst for the preparation of hexahydroquinolines.  相似文献   

20.
Nanomagnetic bisethylferrocene‐containing ionic liquid supported on silica‐coated iron oxide (Fe3O4@SiO2@Im‐bisethylFc [HC2O4]) as a novel catalyst was designed and synthesized. The described catalyst was recycled and used without change in the time and efficiency of the condensation reaction. The Fourier transform‐infrared spectroscopy (FT‐IR), scanning electron microscopy images, X‐ray diffraction patterns, energy‐dispersive X‐ray spectroscopy, transmission electron microscope and vibrating‐sample magnetometer results confirmed the formation of Fe3O4@SiO2@Im‐bisethylFc [HC2O4] magnetic nanoparticle. The novel bis‐coumarin derivatives were identified by 1H‐NMR, 13C‐NMR, FT‐IR and CHNS analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号