首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Development of high‐performance organic thermoelectric (TE) materials is of vital importance for flexible power generation and solid‐cooling applications. Demonstrated here is the significant enhancement in TE performance of selenium‐substituted diketopyrrolopyrrole (DPP) derivatives. Along with strong intermolecular interactions and high Hall mobilities of 1.0–2.3 cm2 V?1 s?1 in doping‐states for polymers, PDPPSe‐12 exhibits a maximum power factor and ZT of up to 364 μW m?1 K?2 and 0.25, respectively. The performance is more than twice that of the sulfur‐based DPP derivative and represents the highest value for p‐type organic thermoelectric materials based on high‐mobility polymers. These results reveal that selenium substitution can serve as a powerful strategy towards rationally designed thermoelectric polymers with state‐of‐the‐art performances.  相似文献   

2.
3.
4.
Low n‐doping efficiency and inferior stability restrict the thermoelectric performance of n‐type conjugated polymers, making their performance lag far behind of their p‐type counterparts. Reported here are two rigid coplanar poly(p‐phenylene vinylene) (PPV) derivatives, LPPV‐1 and LPPV‐2 , which show nearly torsion‐free backbones. The fused electron‐deficient rigid structures endow the derivatives with less conformational disorder and low‐lying lowest unoccupied molecular orbital (LUMO) levels, down to ?4.49 eV. After doping, two polymers exhibited high n‐doping efficiency and significantly improved air stability. LPPV‐1 exhibited a high conductivity of up to 1.1 S cm?1 and a power factor as high as 1.96 μW m?1 K?2. Importantly, the power factor of the doped LPPV‐1 thick film degraded only 2 % after 7 day exposure to air. This work demonstrates a new strategy for designing conjugated polymers, with planar backbones and low LUMO levels, towards high‐performance and potentially air‐stable n‐type polymer thermoelectrics.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
We report the high‐pressure structural characterization of an organic polyiodide salt in which a progressive addition of iodine to triiodide groups occurs. Compression leads to the initial formation of discrete heptaiodide units, followed by polymerization to a 3D anionic network. Although the structural changes appear to be continuous, the insulating salt becomes a semiconducting polymer above 10 GPa. The features of the pre‐reactive state and the polymerized state are revealed by analysis of the computed electron and energy densities. The unusually high electrical conductivity can be explained with the formation of new bonds.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号