首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 611 毫秒
1.
In situ quantification of the conjugation efficiency of azide‐terminated synthetic polymers/imaging probes and thiol‐functionalized antibodies/proteins/peptides was enabled by a doubly caged profluorescent and heterodifunctional core molecule C1 as a self‐sorting bridging unit. Orthogonal dual “click” coupling of C1 with azide‐ and thiol‐functionalized precursors led to highly fluorescent bioconjugates, whereas single‐click products remained essentially nonfluorescent. Integration with FRET processes was also possible. For the construction of antibody–probe conjugates from an anti‐carcinoembryonic antigen and a quinone‐caged profluorescent naphthalimide derivative, the dual “click” coupling process with C1 was monitored on the basis of the emission turn‐on of C1 , whereas prominent changes in FRET ratios occurred for antibody–imaging‐probe conjugates when specifically triggered by quinone oxidoreductase (NQO1), which is overexpressed in various types of cancer cells.  相似文献   

2.
Folate receptors (FRs) are membrane proteins involved in folic acid uptake, and the alpha isoform (FR‐α) is overexpressed in ovarian and endometrial cancer cells. For fluorescence imaging of FRs in vivo, the near‐infrared (NIR) region (650–900 nm), in which tissue penetration is high and autofluorescence is low, is optimal, but existing NIR fluorescent probes targeting FR‐α show high non‐specific tissue adsorption, and require prolonged washout to visualize tumors. We have designed and synthesized a new NIR fluorescent probe, FolateSiR‐1 , utilizing a Si‐rhodamine fluorophore having a carboxy group at the benzene moiety, coupled to a folate ligand moiety through a negatively charged tripeptide linker. This probe exhibits very low background fluorescence and afforded a tumor‐to‐background ratio (TBR) of up to 83 in FR‐expressing tumor‐bearing mice within 30 min. Thus, FolateSiR‐1 has the potential to contribute to the research in the field of biology and the clinical medicine.  相似文献   

3.
New spin labeling strategies have immense potential in studying protein structure and dynamics under physiological conditions with electron paramagnetic resonance (EPR) spectroscopy. Here, a new spin‐labeled chemical recognition unit for switchable and concomitantly high affinity binding to His‐tagged proteins was synthesized. In combination with an orthogonal site‐directed spin label, this novel spin probe, Proxyl‐trisNTA (P‐trisNTA) allows the extraction of structural constraints within proteins and macromolecular complexes by EPR. By using the multisubunit maltose import system of E. coli: 1) the topology of the substrate‐binding protein, 2) its substrate‐dependent conformational change, and 3) the formation of the membrane multiprotein complex can be extracted. Notably, the same distance information was retrieved both in vitro and in situ allowing for site‐specific spin labeling in cell lysates under in‐cell conditions. This approach will open new avenues towards in‐cell EPR.  相似文献   

4.
The global pathogen Mycobacterium tuberculosis and other species in the suborder Corynebacterineae possess a distinctive outer membrane called the mycomembrane (MM). The MM is composed of mycolic acids, which are either covalently linked to an underlying arabinogalactan layer or incorporated into trehalose glycolipids that associate with the MM non‐covalently. These structures are generated through a process called mycolylation, which is central to mycobacterial physiology and pathogenesis and is an important target for tuberculosis drug development. Current approaches to investigating mycolylation rely on arduous analytical methods that occur outside the context of a whole cell. Herein, we describe mycobacteria‐specific chemical reporters that can selectively probe either covalent arabinogalactan mycolates or non‐covalent trehalose mycolates in live mycobacteria. These probes, in conjunction with bioorthogonal chemistry, enable selective in situ detection of the major MM components.  相似文献   

5.
Recently, metabolic glycoengineering with bioorthogonal click reactions has focused on improving the tumor targeting efficiency of nanoparticles as delivery vehicles for anticancer drugs or imaging agents. It is the key technique for developing tumor‐specific metabolic precursors that can generate unnatural glycans on the tumor‐cell surface. A cathepsin B‐specific cleavable substrate (KGRR) conjugated with triacetylated N‐azidoacetyl‐d ‐mannosamine (RR‐S‐Ac3ManNAz) was developed to enable tumor cells to generate unnatural glycans that contain azide groups. The generation of azide groups on the tumor cell surface was exogenously and specifically controlled by the amount of RR‐S‐Ac3ManNAz that was fed to target tumor cells. Moreover, unnatural glycans on the tumor cell surface were conjugated with near infrared fluorescence (NIRF) dye‐labeled molecules by a bioorthogonal click reaction in cell cultures and in tumor‐bearing mice. Therefore, our RR‐S‐Ac3ManNAz is promising for research in tumor‐specific imaging or drug delivery.  相似文献   

6.
In spite of the wide application potential of 1,2,4,5‐tetrazines, particularly in live‐cell and in vivo imaging, a major limitation has been the lack of practical synthetic methods. Here we report the in situ synthesis of (E)‐3‐substituted 6‐alkenyl‐1,2,4,5‐tetrazine derivatives through an elimination–Heck cascade reaction. By using this strategy, we provide 24 examples of π‐conjugated tetrazine derivatives that can be conveniently prepared from tetrazine building blocks and related halides. These include tetrazine analogs of biological small molecules, highly conjugated buta‐1,3‐diene‐substituted tetrazines, and a diverse array of fluorescent probes suitable for live‐cell imaging. These highly conjugated probes show very strong fluorescence turn‐on (up to 400‐fold) when reacted with dienophiles such as cyclopropenes and trans‐cyclooctenes, and we demonstrate their application for live‐cell imaging. This work provides an efficient and practical synthetic methodology for tetrazine derivatives and will facilitate the application of conjugated tetrazines, particularly as fluorogenic probes for live‐cell imaging.  相似文献   

7.
Protected by the host cells, the hidden intracellular bacteria are typically difficult to kill by common antibiotics and cannot be visualized without complex cellular pretreatments. Herein, we successfully developed a bacteria‐metabolizable dual‐functional probe TPEPy‐d ‐Ala, which is based on d ‐alanine and a photosensitizer with aggregation‐induced emission for fluorescence turn‐on imaging of intracellular bacteria in living host cells and photodynamic ablation in situ. Once metabolically incorporated into bacterial peptidoglycan, the intramolecular motions of TPEPy‐d ‐Ala are inhibited, leading to an enhanced fluorescent signal, which allows the clear visualization of the intracellular bacteria. Moreover, TPEPy‐d ‐Ala can effectively ablate the labeled intracellular bacteria in situ owing to covalent ligation to peptidoglycan, yielding a low intracellular minimum inhibitory concentration (MIC) of 20±0.5 μg mL?1, much more efficient than that of a commonly used antibiotic, vancomycin.  相似文献   

8.
The bioorthogonal inverse‐electron‐demand Diels–Alder (IEDDA) cleavage reaction between tetrazine and trans‐cyclooctene (TCO) is a powerful way to control the release of bioactive agents and imaging probes. In this study, a pretargeted activation strategy using single‐walled carbon nanotubes (SWCNTs) that bear tetrazines (TZ@SWCNTs) and a TCO‐caged molecule was used to deliver active effector molecules. To optimize a turn‐on signal by using in vivo fluorescence imaging, we developed a new fluorogenic near‐infrared probe that can be activated by bioorthogonal chemistry and image tumours in mice by caging hemicyanine with TCO (tHCA). With our pretargeting strategy, we have shown selective doxorubicin prodrug activation and instantaneous fluorescence imaging in living cells. By combining a tHCA probe and a pretargeted bioorthogonal approach, real‐time, non‐invasive tumour visualization with a high target‐to‐background ratio was achieved in a xenograft mice tumour model. The combined advantages of enhanced stability, kinetics and biocompatibility, and the superior pharmacokinetics of tetrazine‐functionalised SWCNTs could allow application of targeted bioorthogonal decaging approaches with minimal off‐site activation of fluorophore/drug.  相似文献   

9.
Herein, we describe the first catalytic asymmetric intramolecular [4+2] cycloaddition of in situ generated ortho‐quinone methides. In the presence of a confined chiral imidodiphosphoric acid catalyst, various salicylaldehydes react with dienyl alcohols to give transient ortho ‐quinone methide intermediates, which undergo an intramolecular [4+2] cycloaddition to provide highly functionalized furanochromanes and pyranochromanes in excellent diastereoselectivity and enantioselectivity.  相似文献   

10.
The synthesis and evaluation of two cathepsin S‐specific probes is described. For long‐term retention of the probe at the target site and a high signal‐to‐noise ratio, we introduced a lipidation approach via the simple attachment of palmitoic acid to the reporter. After cathepsin S‐specific cleavage in cultured cells and in a grafted tumor mouse model, fluorescence increased owing to dequenching and we observed an intracellular accumulation of the fluorescence in the target tissue. The lipidated probe provided a prolonged and strongly fluorescent signal in tumors when compared to the very similar non‐lipidated probe, demonstrating that non‐invasive tumor identification is feasable. The homing principle by probe lipidation might also work for selective administration of cytotoxic compounds to specifically reduce tumor mass.  相似文献   

11.
Methionine sulfoxide reductase A (MsrA) is an enzyme involved in redox balance and signaling, and its aberrant activity is implicated in a number of diseases (for example, Alzheimer's disease and cancer). Since there is no simple small molecule tool to monitor MsrA activity in real time in vivo, we aimed at developing one. We have designed a BODIPY‐based probe called (S)‐Sulfox‐1, which is equipped with a reactive sulfoxide moiety. Upon reduction with a model MsrA (E. coli), it exhibits a bathochromic shift in the fluorescence maximum. This feature was utilized for the real‐time ratiometric fluorescent imaging of MsrA activity in E. coli cells. Significantly, our probe is capable of capturing natural variations of the enzyme activity in vivo.  相似文献   

12.
Herein, we report the development of an 18F‐labeled, activity‐based small‐molecule probe targeting the cancer‐associated serine hydrolase NCEH1. We undertook a focused medicinal chemistry campaign to simultaneously preserve potent and specific NCEH1 labeling in live cells and animals, while permitting facile 18F radionuclide incorporation required for PET imaging. The resulting molecule, [18F]JW199, labels active NCEH1 in live cells at nanomolar concentrations and greater than 1000‐fold selectivity relative to other serine hydrolases. [18F]JW199 displays rapid, NCEH1‐dependent accumulation in mouse tissues. Finally, we demonstrate that [18F]JW199 labels aggressive cancer tumor cells in vivo, which uncovered localized NCEH1 activity at the leading edge of triple‐negative breast cancer tumors, suggesting roles for NCEH1 in tumor aggressiveness and metastasis.  相似文献   

13.
Tumor complexity makes the development of highly sensitive tumor imaging probes an arduous task. Here, we construct a peptide‐based near‐infrared probe that is responsive to fibroblast activation protein‐α (FAP‐α), and specifically forms nanofibers on the surface of cancer‐associated fibroblasts (CAFs) in situ. The assembly/aggregation‐induced retention (AIR) effect results in enhanced accumulation and retention of the probe around the tumor, resulting in a 5.5‐fold signal enhancement in the tumor 48 h after administration compared to that of a control molecule that does not aggregate. The probe provides a prolonged detectable window of 48 h for tumor diagnosis. The selective assembly of the probe results in a signal intensity over four‐ and fivefold higher in tumor than in the liver and kidney, respectively. With enhanced tumor imaging capability, this probe can visualize small tumors around 2 mm in diameter.  相似文献   

14.
Palladium(II) complexes are generally reactive toward substitution/reduction, and their biological applications are seldom explored. A new series of palladium(II) N‐heterocyclic carbene (NHC) complexes that are stable in the presence of biological thiols are reported. A representative complex, [Pd(C^N^N)(N,N′‐nBu2NHC)](CF3SO3) ( Pd1 d , HC^N^N=6‐phenyl‐2,2′‐bipyridine, N,N′‐nBu2NHC=N,N′‐di‐n‐butylimidazolylidene), displays potent killing activity toward cancer cell lines (IC50=0.09–0.5 μm ) but is less cytotoxic toward a normal human fibroblast cell line (CCD‐19Lu, IC50=11.8 μm ). In vivo anticancer studies revealed that Pd1 d significantly inhibited tumor growth in a nude mice model. Proteomics data and in vitro biochemical assays reveal that Pd1 d exerts anticancer effects, including inhibition of an epidermal growth factor receptor pathway, induction of mitochondrial dysfunction, and antiangiogenic activity to endothelial cells.  相似文献   

15.
The pre‐targeted imaging of enzyme activity has not been reported, likely owing to the lack of a mechanism to retain the injected substrate in the first step for subsequent labeling. Herein, we report the use of two bioorthogonal reactions—the condensation reaction of aromatic nitriles and aminothiols and the inverse‐electron demand Diels–Alder reaction between tetrazine and trans‐cyclooctene (TCO)—to develop a novel strategy for pre‐targeted imaging of the activity of proteases. The substrate probe ( TCO‐C‐SNAT4 ) can be selectively activated by an enzyme target (e.g. caspase‐3/7), which triggers macrocyclization and subsequent in situ self‐assembly into nanoaggregates retained at the target site. The tetrazine‐imaging tag conjugate labels TCO in the nanoaggregates to generate selective signal retention for imaging in vitro, in cells, and in mice. Owing to the decoupling of enzyme activation and imaging tag immobilization, TCO‐C‐SNAT4 can be repeatedly injected to generate and accumulate more TCO‐nanoaggregates for click labeling.  相似文献   

16.
《中国化学》2017,35(11):1711-1716
A fluorescent turn‐on probe for specifically targeting γ ‐glutamyltranspeptidase (GGT ) was designed and synthesized by integrating boron‐dipyrromethene (BODIPY ) as a chromophore and glutathione (GSH ) as the GGT substrate. GGT ‐catalyzed the cleavage of the γ ‐glutamyl bond and generated the aromatic hydrocarbon transfer between the sulfur and the nitrogen atom in BODIPY , leading to distinct optical changes. Such specific responsiveness provides an easily distinguishable fluorescence signal to visualize the GGT activity in living cells and differentiate GGT ‐positive cancer cells from GGT ‐negative cells.  相似文献   

17.
γ‐Glutamyltranspeptidase (GGT) is a tumor biomarker that selectively catalyzes the cleavage of glutamate overexpressed on the plasma membrane of tumor cells. Here, we developed two novel fluorescent in situ targeting (FIST) probes that specifically target GGT in tumor cells, which comprise 1) a GGT‐specific substrate unit (GSH), and 2) a boron–dipyrromethene (BODIPY) moiety for fluorescent signalling. In the presence of GGT, sulfur‐substituted BODIPY was converted to amino‐substituted BODIPY, resulting in dramatic fluorescence variations. By exploiting this enzyme‐triggered photophysical property, we employed these FIST probes to monitor the GGT activity in living cells, which showed remarkable differentiation between ovarian cancer cells and normal cells. These probes represent two first‐generation chemodosimeters featuring enzyme‐mediated rapid, irreversible aromatic hydrocarbon transfer between the sulfur and nitrogen atoms accompanied by switching of photophysical properties.  相似文献   

18.
With the advent of single‐molecule methods, chemoselective and site‐specific labeling of proteins evolved to become a central aspect in chemical biology as well as cell biology. Protein labeling demands high specificity, rapid as well as efficient conjugation, while maintaining low concentration and biocompatibility under physiological conditions. Generic methods that do not interfere with the function, dynamics, subcellular localization of proteins, and crosstalk with other factors are crucial to probe and image proteins in vitro and in living cells. Alternatives to enzyme‐based tags or autofluorescent proteins are short peptide‐based recognition tags. These tags provide high specificity, enhanced binding rates, bioorthogonality, and versatility. Here, we report on recent applications of multivalent chelator heads, recognizing oligohistidine‐tagged proteins. The striking features of this system has facilitated the analysis of protein complexes by single‐molecule approaches.  相似文献   

19.
Bioorthogonal turn‐on probes have been widely utilized in visualizing various biological processes. Most of the currently available bioorthogonal turn‐on probes are blue or green emissive fluorophores with azide or tetrazine as functional groups. Herein, we present an alternative strategy of designing bioorthogonal turn‐on probes based on red‐emissive fluorogens with aggregation‐induced emission characteristics (AIEgens). The probe is water soluble and non‐fluorescent due to the dissipation of energy through free molecular motion of the AIEgen, but the fluorescence is immediately turned on upon click reaction with azide‐functionalized glycans on cancer cell surface. The fluorescence turn‐on is ascribed to the restriction of molecular motion of AIEgen, which populates the radiative decay channel. Moreover, the AIEgen can generate reactive oxygen species (ROS) upon visible light (λ=400–700 nm) irradiation, demonstrating its dual role as an imaging and phototherapeutic agent.  相似文献   

20.
Development of novel bioanalytical methods for monitoring of H2S is key toward understanding the physiological and pathological functions of this gasotransmitter in live organisms. A ruthenium(II)‐complex‐based luminescence probe, Ru‐MDB (MDB: 4’‐methyl‐[2,2’‐bipyridine]‐4‐yl)methyl 2‐((2,4‐dinitrophenyl)thio)benzoate), was developed by introducing a new H2S responsive masking moiety to a red‐emitting RuII luminophore. Cleavage of this masking group by a H2S‐triggered reaction leads to a luminescence “off–on” response. The long‐lived emissions of Ru‐MDB and its reaction product with H2S allowed quantitative detection of H2S in autofluorescence‐rich human sera and adult zebrafish organs using the time‐gated luminescence mode. Ru‐MDB exhibits red emission, a large Stokes shift, high specificity and sensitivity for H2S detection, and low cytotoxicity, which enables imaging and flow cytometry analysis of lysosomal H2S generation in live inflamed cells under drug stimulation. Monitoring of H2S in live Daphnia magna, zebrafish embryos, adult zebrafish, and mice, was conducted by in vivo imaging using Ru‐MDB as a probe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号