首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on the fabrication of hollow optical waveguides in fused silica using femtosecond laser micromachining. We show that in such hollow waveguides, high-intensity femtosecond laser beams can be guided with low optical loss. Our technique, which was established earlier for fabrication of optofluidic structures in glass, can ensure a high smoothness at the inner surfaces of the hollow waveguides and provide the unique capability of fabrication of hollow waveguides with complex geometries and configurations. A transmission of ∼90% at 633 nm wavelength is obtained for a 62-mm-long hollow waveguide with an inner diameter of ∼250 μm. In addition, nonlinear propagation of femtosecond laser pulses in the hollow waveguide is demonstrated, showing that the spectral bandwidth of the femtosecond pulses can be broadened from ∼27.2 to ∼55.7 nm.  相似文献   

2.
A high‐power femtosecond Yb:fiber system is seeded by a phase‐locked Er:fiber source and drives an ultra‐broadband optical parametric amplifier that operates at 10 MHz repetition rate. The resulting pulses display precise control of the carrier‐envelope phase. Their 8.3 fs temporal duration corresponds to 2.3 optical cycles of the 1100 nm carrier wavelength. Focusing 200 nJ of pulse energy into widegap materials generates optical harmonics up to fifth order. Even in a perturbative regime, strong effects of the carrier‐envelope phase on the emitted spectra are observed.  相似文献   

3.
Design and fabrication of an optimum holographic optical element (HOE) lens for a femtosecond laser pulse using a hologram computer-aided design (CAD) tool is presented. The hologram CAD tool, which the authors have developed can design, analyze, and evaluate holograms fabricated by interferometrical technique. The function of the tool is extended to design and analyze a HOE lens illuminated with a femtosecond laser pulse. An optimum HOE lens for a laser pulse, which has 130 fs duration, 720 nm central wavelength, and 10 nm spectrum bandwidth, is designed by the tool. The optimum HOE lens gives both high diffraction efficiency and small amount of aberration. The designed HOE lens is fabricated and its optical characteristics have been experimentally evaluated. The reconstructed point images agree with the results of the numerical simulations by the tool. The tool demonstrates the capability of designing the optimum HOE lens for a femtosecond laser pulse.  相似文献   

4.
We report on rapid fabrication of optical volume gratings in Foturan glass using a modulated femtosecond laser focused with cylindrical lenses. An optical volume grating with an area of 2 mm ×3 mm and ∼2 mm thickness can be achieved within 10 min by use of this method. Optical micrography confirms the volume nature of the gratings and shows that they consist of 10 μm-thickness planes with a period of 15 μm. The diffraction efficiency is examined to be ∼56%. The limitations and future implementations of the fabricated volume gratings are discussed.  相似文献   

5.
Femtosecond‐laser micromachining has been developed as one of the most efficient techniques for direct three‐dimensional microfabrication of transparent optical materials. In integrated photonics, by using direct writing of femtosecond/ultrafast laser pulses, optical waveguides can be produced in a wide variety of optical materials. With diverse parameters, the formed waveguides may possess different configurations. The paper by F. Chen and J.R. Vázquez de Aldana (pp. 251–275) focuses on crystalline dielectric materials, and is a review of the state‐of‐the‐art in fabrication, characterization and applications of femtosecond‐laser micromachined waveguiding structures in optical crystals and ceramics.  相似文献   

6.
We describe the detection and stabilization of the carrier envelope offset (CEO) frequency of a diode-pumped Yb:KYW (ytterbium-doped potassium yttrium tungstate) femtosecond oscillator that is spectrally centered at 1033 nm. The system consists of a diode-pumped, passively mode-locked femtosecond laser that produces 290 fs pulses at a repetition rate of 160 MHz. These pulses are first amplified, spectrally broadened and temporally compressed to 80 fs, and then launched into microstructured fiber to produce an octave-spanning spectrum. An f-2f nonlinear interferometer is employed with the broadened spectrum to detect and stabilize the CEO frequency through feedback to the pump laser current. These results demonstrate that such a Yb-doped tungstate laser can provide an efficient, compact, high-repetition-rate optical frequency comb with coverage from 650–1450 nm.  相似文献   

7.
Silicon waveguide polarizers offer a simple yet robust approach to address the polarization‐dependent issue of silicon‐based optical components, and hence have found numerous applications in silicon photonics. However, the available silicon waveguide polarizers suffer from the issue of large device footprint, high insertion loss (IL), and/or fabrication complexities. Here, a silicon waveguide transverse magnetic (TM)‐pass polarizer is constructed by coating a silicon waveguide with an ultra‐thin plasmonic metasurface structure that is capable of guiding slow surface wave (SW) mode. The transverse electric (TE) waveguide mode can be converted into SW mode with the involvement of metasurfaces, and hence is intrinsically absorbed and forbidden to pass, while the TM waveguide mode can be well guided due to little influence. A typical metasurface polarizer with an ultra‐short length of 2.4 µm enables the IL of 28.16 dB for the TE mode, and that of 0.53 dB for the TM mode at 1550 nm. Multiple‐band TM‐pass polarizers can be obtained by cascading two or more different metasurface‐coated silicon waveguides along the propagation direction, and a dual‐band TM‐pass polarizer is demonstrated with the IL being of 19.21 and 29.09 dB for the TE mode at 1310 and 1550 nm, respectively.  相似文献   

8.
We have developed a technique for the temporal characterisation of weak deep-ultraviolet (DUV) ultrashort laser pulses by combining asynchronous optical sampling with difference-frequency mixing. The intensity profile of picosecond DUV pulses, with peak powers as low as 2.5 W, have been measured accurately with a resolution of 50 fs. The method can be extended to complete amplitude and phase characterisation of few femtosecond laser pulses at DUV wavelengths.  相似文献   

9.
Time-resolved dynamics of plasma formation and bulk refractive-index modification in fluoride glass (ZBLAN) excited by a tightly focused femtosecond (130 fs) Ti:sapphire laser (λp=790 nm) was observed in situ. The femtosecond time-resolved pump–probe measurement with perpendicularly linear polarized beams was used to study the dynamics of both plasma formation and induced permanent structural transformation with refractive-index change. In the refractive-index domain, the lifetime of induced plasma formation is ~35 ps and structural transition time for forming the refractive-index change is ~80 ps. In the optical damage domain, however, the lifetime of induced plasma formation is ~40 ps and structural transition time for forming the optical damage is ~140 ps. We found that the process of refractive-index bulk modification is significantly different from that of optical cracks. From the diffraction efficiency of Kogelnik's coupled mode theory, the maximum value of refractive-index change (Δn) was estimated to be 1.3×10?2. By the scanning of fluoride glass on the optical X–Y–Z stages, the fabrication of internal grating with refractive-index modification was demonstrated in fluoride glass using tightly focused femtosecond laser.  相似文献   

10.
We review recent investigations of the femtosecond nonlinear optical response of the two-dimensional electron gas (2DEG) in a strong magnetic field. We probe the Quantum Hall (QH) regime for filling factors ν∼1. Our focus is on the transient coherence induced via optical excitation and on its time evolution during early femtosecond timescales. We simultaneously study the interband and intraband coherence in this system by using a nonlinear spectroscopic technique, transient three-pulse four wave mixing optical spectroscopy, and a many-body theory. We observe striking differences in the temporal and spectral profile of the nonlinear optical signal between a modulation doped quantum well system (with the 2DEG) and a similar undoped quantum well (without a 2DEG). We attribute these qualitative differences to Coulomb correlations between the photoexcited electron-hole pairs and the 2DEG. We show, in particular, that intraband many-particle coherences assisted by the inter-Landau-level magnetoplasmon excitations of the 2DEG dominate the femtosecond nonlinear optical response. The most striking effect of these exciton-magnetoplasmon coherences is a large off-resonant four-wave-mixing signal in the case of very low photoexcited carrier densities, not observed in the undoped system, with strong temporal oscillations and unusually symmetric temporal profile.  相似文献   

11.
12.
We have demonstrated catalyst-free fabrication of multi-branched ZnO nanorods and their interesting optical properties. Under Xe lamp excitation (325 nm), it is found that the ethanol rinsing leads to an obviously enhanced ultraviolet emission at room temperature. Moreover, temperature-dependent emission spectra exhibit an anomalous temperature dependence of the ultraviolet emission intensity. This has been analyzed in terms of the competition between the radiative and nonradiative hopping processes using a model developed for disordered porous semiconductors. With femtosecond pulse excitation (640 nm), two-photon-induced photoluminescence is observed, which is confirmed by the quadratic dependence of the emission intensity on the excitation pulse energy.  相似文献   

13.
Ultra-fast optical measurements of few-layer suspended graphene films grown by chemical vapor deposition were performed with femtosecond pump–probe spectroscopy. The relaxation processes were monitored in transient differential transmission (ΔT/T) after excitation at two different wavelengths of 350 and 680 nm. Intraband electron–electron scattering, electron–phonon scattering, interband Auger recombination and impact ionization were considered to contribute to ΔT/T. All these processes may play important roles in spreading the quasiparticle distribution in time scales up to 100 fs. Optical phonon emission and absorption by highly excited non-equilibrium electrons were identified from ΔT/T peaks in the wide spectral range. When the probe energy region was far from the pump energy, the energy dependence of the quasiparticle decay rate was found to be linear. Longer lifetimes were observed when the quasiparticle population was localized due to optical phonon emission or absorption.  相似文献   

14.
We present detailed investigations of a femtosecond green-pumped optical parametric oscillator (OPO) based on lithium triborate. As pump source, a frequency-doubled Yb-fiber laser-amplifier system is used. The OPO generates signal pulses tunable over a spectral range from 780 to 940 nm and idler pulses tunable from 1630 to 1190 nm. More than 250 mW are generated in the signal beam and more than 300 mW in the idler beam. Without dispersion compensation chirped signal pulses with a pulse duration between 100 and 250 fs are measured. Using this system for coherent anti-Stokes Raman scattering spectroscopy, vibrational resonances between 1110 and 6760 cm−1 can be excited. Due to the chirped pulses, a spectral resolution of 100 cm−1 is achieved, which is 2.5 times higher compared to an excitation with time-bandwidth limited pulses.  相似文献   

15.
We demonstrate a compact and cost-effective setup to generate broadband THz radiation. As pump source we use a diode-pumped solid-state femtosecond oscillator or a femtosecond fiber laser system, partially in combination with an optical parametric oscillator. For the THz generation we utilize optical rectification in gallium phosphide (GaP) and gallium arsenide (GaAs). The THz power is on the order of 1 μW and we demonstrate imaging and spectral measurements with this setup.  相似文献   

16.
The complex formation of bis(18‐crown‐6)stilbene ( 1 ) and its supramolecular donor‐acceptor complex with N,N′‐bis(ammonioethyl) 1,2‐di(4‐pyridyl)ethylene derivative ( 2 ) with alkali and alkaline‐earth metal perchlorates has been studied using absorption, steady‐state fluorescence, and femtosecond transient absorption spectroscopy. The formation of 1 ?Mn+ and 1 ?(Mn+)2 complexes in acetonitrile was demonstrated. The weak long‐wavelength charge‐transfer absorption band of 1 · 2 completely vanishes upon complexation with metal cations because of disruption of the pseudocyclic structure. The spectroscopic and luminescence parameters, stability constants, and 2‐stage dissociation constants were calculated. The initial stage of a recoordination process was found in the excited complexes 1 ?M+ and 1 ?(M+)2 (M = Li, Na). The pronounced fluorescence quenching of 1 · 2 is explained by very fast back electron transfer (τet = 0.397 ps). The structure of complex 1 · 2 was studied by X‐ray diffraction; stacked ( 1 · 2 )m polymer in which the components were connected by hydrogen bonding and stacking was found in the crystal. These compounds can be considered as novel optical molecular sensors for alkali and alkaline‐earth metal cations.  相似文献   

17.
18.
We used a sensitive optical method to study the magnetic phase transition of antiferromagnetic MnS layers. The method is applicable for very small numbers of spins, e.g., thin single layers. We studied the optical and magnetic properties of MnS layers using the internal optical transition of the manganese 3d-shell. The temperature dependence of the Mn-emission exhibits a pronounced minimum revealing the para- to anti-ferromagnetic phase transition. The MnS layers were grown by molecular beam epitaxy, embedded between diamagnetic ZnSe cladding layers on a (100)-GaAs substrate. It was found that the Néel-temperature itself is influenced by the biaxial strain and can be changed in an external magnetic field in case of quasi 2D MnS-layers. The phase diagram reveals a weak Ising like anisotropic contribution in case of a 1.8 nm thin layer, whereas a 8.6 nm thick layer behaves still like an ideal isotropic Heisenberg system.  相似文献   

19.
The insulator‐to‐metal transition (IMT) in vanadium dioxide (VO2) can enable a variety of optics applications, including switching and modulation, optical limiting, and tuning of optical resonators. Despite the widespread interest in VO2 for optics, the wavelength‐dependent optical properties across its IMT are scattered throughout the literature, are sometimes contradictory, and are not available at all in some wavelength regions. Here, the complex refractive index of VO2 thin films across the IMT is characterized for free‐space wavelengths from 300 nm to 30 µm, using broadband spectroscopic ellipsometry, reflection spectroscopy, and the application of effective‐medium theory. VO2 films of different thicknesses are studied, on two different substrates (silicon and sapphire), and grown using different synthesis methods (sputtering and sol–gel). While there are differences in the optical properties of VO2 synthesized under different conditions, these differences are surprisingly small in the ≈2–11 µm range where the insulating phase of VO2 also has relatively low optical loss. It is anticipated that the refractive‐index datasets from this article will be broadly useful for modeling and design of VO2‐based optical and optoelectronic components, especially in the mid‐wave and long‐wave infrared.  相似文献   

20.
The space-velocity distribution of electrons propagating in vacuum can be deformed by the ponderomotive potential produced by high-intensity femtosecond laser pulses, which makes it possible to subsequently separate such electrons from the initial beam. It is shown that optical modification of electron beams with kinetic energies on the order of 100 eV by femtosecond laser radiation with an intensity from 1014 to 1018 W/cm2 makes it possible to form electron beams with a duration on the order of 50–100 fs. Examples of optical control over the shape of electron beams, based on deflection, reflection, focusing, and splitting of electron beams, are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号