首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Herein, we report the synthesis and adsorption property of a novel chelating fiber containing azido group. Firstly, the brominated fiber (PP‐St‐DVB‐Br) was obtained via the reaction of polypropylene‐(g)‐styrene‐divinylbenzene fiber (PP‐St‐DVB) with bromine in CH2Cl2 solution. Then, azido chelating fiber (PP‐St‐DVB‐N3) was prepared by azidation of PP‐St‐DVB‐Br fiber. Its structure and properties were characterized by Fourier transform infrared, elemental analysis, thermogravimetric analysis, and chemical titration, respectively. The micromophology and functional group distribution in fibrous matrix were investigated by scanning electron microscopy‐energy dispersive spectroscopy. The results show that the chelating fiber has high functional group contents (2.11 mmol/g for PP‐St‐DVB‐N3) and uniform distribution. Different from granulate chelating resin, the novel fibrous adsorbent possesses excellent adsorption ability for Hg(II) and Pb(II) ions (408.9 mg/g for Hg2+ and 334.4 mg/g for Pb2+), and the adsorption capacity of the fiber has no loss until five cycles. The novel absorbent material shows the potential application prospect in the treatment of heavy metal wastewater. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
A porous graphitic carbon nitride (g‐C3N4)/graphene composite was prepared by a simple hydrothermal method and explored as the counter electrode of dye‐sensitized solar cells (DSCs). The obtained g‐C3N4/graphene composite was characterized by XRD, SEM, TEM, FTIR spectroscopy, and X‐ray photoelectron spectroscopy. The results show that incorporating graphene nanosheets into g‐C3N4 forms a three‐dimensional architecture with a high surface area, porous structure, efficient electron‐transport network, and fast charge‐transfer kinetics at the g‐C3N4/graphene interfaces. These properties result in more electrocatalytic active sites and facilitate electrolyte diffusion and electron transport in the porous framework. As a result, the as‐prepared porous g‐C3N4/graphene composite exhibits an excellent electrocatalytic activity. In I?/I3? redox electrolyte, the charge‐transfer resistance of the porous g‐C3N4/graphene composite electrode is 1.8 Ω cm2, which is much lower than those of individual g‐C3N4 (70.1 Ω cm2) and graphene (32.4 Ω cm2) electrodes. This enhanced electrocatalytic performance is beneficial for improving the photovoltaic performance of DSCs. By employing the porous g‐C3N4/graphene composite as the counter electrode, the DSC achieves a conversion efficiency of 7.13 %. This efficiency is comparable to 7.37 % for a cell with a platinum counter electrode.  相似文献   

3.
The present work is about the preparation of silver (Ag)-doped manganese oxide (MnO2)/graphene oxide (GO) composite thin films are deposited by a facile and binder-free successive ionic layer adsorption and reaction (SILAR) method for the first time. The Brunauer-Emmett-Teller (BET) study revealed the nanosheets of MnO2–Ag3/GO exhibit high specific surface area of 192 m2 g?1. The tailored flower-like morphology and interconnected nanosheets of MnO2–Ag3/GO electrodes achieved high electrochemical performance. The maximum specific capacitance (Cs) of 877 F g?1 at the scan rate of 5 mV s?1 is obtained for MnO2–Ag3/GO electrode tested in 1 M sodium sulfate (Na2SO4) electrolyte with capacity retention of 94.57% after 5000 cycling stability. The MnO2–Ag3/GO composite-based flexible solid state symmetric supercapacitor (FSS-SSC) device delivered Cs as 164 F g?1 with specific energy of 57 Wh kg?1 at specific power of 1.6 kW kg?1 and capacitive retention of 94% after 10,000 cycles.  相似文献   

4.
In the title coordination compound, catena‐poly[[[bis[diaquacadmium(II)]‐μ2trans‐1,2‐bis(4‐pyridyl)ethene]bis{μ2‐2,2′‐[(5‐carboxymethoxy‐m‐phenylene)dioxy]diacetato}] trans‐1,2‐bis(4‐pyridyl)ethene solvate dihydrate], {[Cd2(C12H10O9)2(C12H10N2)(H2O)4]·C12H10N2·2H2O}n, (I), each CdII centre adopts a pentagonal–bipyramidal coordination geometry. The incompletely deprotonated 2,2′‐[(5‐carboxymethoxy‐m‐phenylene)dioxy]diacetate (TCMB) ligands and trans‐1,2‐bis(4‐pyridyl)ethene (bpe) ligands both act as bidentate bridges, linking the CdII centres into one‐dimensional ladders, which are connected into an undulating two‐dimensional (6,3) layer through O—H...N hydrogen bonds between the carboxylate groups of the TCMB ligands and the N atoms of the uncoordinated bpe ligands. Each undulating layer polycatenates two other identical layers, exhibiting the unusual combination of both 2D → 2D parallel and 2D → 3D parallel interpenetration (2D and 3D are two‐ and three‐dimensional, respectively).  相似文献   

5.
From previous reports, graphitic carbon nitride (g‐C3N4) can be used as a photocatalyst, although the low efficiency of solar energy utilization, small specific surface area and high recombination rate of photogenerated electron–hole pairs limit its practical application. For the purpose of increasing photocatalytic activity, especially under irradiation of visible light, we successfully synthesized a new composite, namely porous g‐C3N4/Ag/Cu2O, through chemical adsorption of Ag‐doped Cu2O on porous g‐C3N4, which has not been investigated carefully worldwide. The composition, morphology and optical properties of the composite were investigated through methods including X‐ray diffraction, energy‐dispersive X‐ray, Fourier transform infrared, UV–visible and photoluminescence spectroscopies and transmission electron microscopy. Using rhodamine B as organic pollutant to be degraded under the irradiation of visible light, different mass ratios of Ag/Cu2O doped on porous g‐C3N4 led to enhanced photocatalytic performance of the composite compared to pure porous g‐C3N4. When the mass ratio of Ag/Cu2O is 15%, porous g‐C3N4/Ag/Cu2O exhibits a degradation rate 2.015 times higher than that of pure porous g‐C3N4. The reasons for this phenomenon may be attributed to the increased utilization efficiency of visible light, high‐speed separation of photogenerated electron–hole pairs, accelerated interfacial transfer process of electrons and increased surface area of the composite. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
A novel graphene‐like MoS2/C3N4 (GL‐MoS2/C3N4) composite photocatalyst has been synthesized by a facile ethylene glycol (EG)‐assisted solvothermal method. The structure and morphology of this GL‐MoS2/C3N4 photocatalyst have been investigated by a wide range of characterization methods. The results showed that GL‐MoS2 was uniformly distributed on the surface of GL‐C3N4 forming a heterostructure. The obtained composite exhibited strong absorbing ability in the ultraviolet (UV) and visible regions. When irradiated with visible light, the composite photocatalyst showed high activity superior to those of the respective individual components GL‐MoS2 and GL‐C3N4 in the degradation of methyl orange. The enhanced photocatalytic activity of the composite may be attributed to the efficient separation of electron–hole pairs as a result of the matching band potentials between GL‐MoS2 and GL‐C3N4. Furthermore, a photocatalytic mechanism for the composite material has been proposed, and the photocatalytic reaction kinetics has been measured. Moreover, GL‐MoS2/C3N4 could serve as a novel sensor for trace amounts of Cu2+ since it exhibited good selectivity for Cu2+ detection in water.  相似文献   

7.
  • Manganese dioxide/silver (MnO2/Ag) nanoparticles were fabricated by using KMnO4-NaBH4 redox reaction at room temperature. The optical and structural properties of MnO2/Ag were determined using UV–visible and Fourier transform infrared spectroscopies. The morphology was established with scanning and transmission electron microcopies, and X-ray diffraction. MnO2/Ag showed excellent adsorbing activity to the removal of Congo red. The various kinetic models were used to determine the rate of dye removal. Congo red adsorption onto MnO2Ag proceeds through the pseudo-second-order kinetic model. Langmuir adsorption capacity (Q0max = 97.1 mg/g), and sorption intensity (n = 1.6) were estimated with Langmuir and Freundlich adsorption isotherm models for 250 mg/L Congo red. Elovich model suggest the adsorption of Congo red with the MnO2Ag proceeds through the film diffusion. The positive values of enthalpy changes (ΔH0), entropy changes (ΔS0), and negative Gibbs free energy changes (ΔG0) showed that the Congo red adsorption process was endothermic, spontaneous, and chemisorption process followed with physical mechanism. The results showed that the removal efficiency decreases from 98% to 89% after the six consecutive experiments.
  相似文献   

8.
Inorganic nanowire aerogel with low density, high specific surface area and high porosity has received increasing attention in the field of materials physics and chemistry because of not only the unique structural and physical features of metallic oxide but also low cost, environmental friendliness and earth abundant of precursor materials. In this work, MnO2 nanowire aerogels (MNA) with ultralow density, and stable 3D hierarchical structures was successfully fabricated by freeze‐drying processes using MnO2 nanowire as building blocks. The length of MnO2 nanowires exceeds 100 μm, making it easier to cross‐link and self‐assemble into a 3D network of aerogels, and the acid and alkali resistance of MnO2 enables it to adapt to extreme environments. Simultaneously, the monodispersed MnO2 nanowire was prepared by the hydrothermal method, followed by acid treatment. To obtain superhydrophobic properties and achieve selective oil adsorption, the surfaces of nanowire aerogels were grafted the hydrophobic groups with low surface energy via vapor deposition. It is indicated that the obtained 3D hierarchical MNA show both superhydrophobic and super‐lipophilic properties simultaneously with a high‐water contact angle of 156°  ±  2° and an oil contact angle of 0°. And the MNA exhibited a high oil adsorption capacity of 85–140 g/g, thereby indicating its potential applications in oil/water separation. More importantly, the resulting MNA can be recycled ten cycles without loss of oil absorption capacity (more than 120 g/g). The results presented in this work demonstrate that the as‐prepared nanowire aerogel may find applications in chemical separation and environmental remediation for large‐scale absorption of oils from water.  相似文献   

9.
Mixed‐valence copper(I/II) atoms have been introduced successfully into a Pb/I skeleton to obtain two heterometallic iodoplumbates, namely poly[bis(tetra‐n‐butylammonium) [bis(μ3‐dimethyldithiocarbamato)dodeca‐μ3‐iodido‐hexa‐μ2‐iodido‐tetracopper(I)copper(II)hexalead(II)]], {(C16H36N)2[Cu4ICuIIPb6(C3H6NS2)2I18]}n , (I), and poly[[μ3‐iodido‐tri‐μ2‐iodido‐iodido[bis(1,10‐phenanthroline)copper(I)]copper(I)copper(II)lead(II)] hemiiodine], {[CuICuIIPbI5(C12H8N2)2]·0.5I2}n , (II), under solution and solvothermal conditions, respectively. Compound (I) contains two‐dimensional anionic layers, which are built upon the linkages of CuII(S2CNMe2)2 units and one‐dimensional anionic Pb/I/CuI chains. Tetra‐n‐butylammonium cations are located between the anionic layers and connected to them via C—H…I hydrogen‐bonding interactions. Compound (II) exhibits a one‐dimensional neutral structure, which is composed of [PbI5] square pyramids, [CuII4] tetrahedra and [CuIIN4I] trigonal bipyramids. Face‐to‐face aromatic π–π stacking interactions between adjacent 1,10‐phenanthroline ligands stabilize the structure and assemble compound (II) into a three‐dimensional supramolecular structure. I2 molecules lie in the voids of the structure.  相似文献   

10.
Graphitic carbon nitride (g‐C3N4)‐based photocatalysts have received considerable attention in the field of photocatalysis, especially for photocatalytic H2 evolution. However, the intrinsic disadvantages of g‐C3N4 seriously limit its practical application. Herein, CdS nanospheres with an average diameter of 135 nm prepared using a solvothermal method were used as co‐catalysts to form CdS/g‐C3N4 composites (CSCN) to enhance the photocatalytic activity. Various techniques were employed to characterize the structure, composition and optical properties of the as‐prepared samples. It was found that the CdS nanospheres were relatively uniformly dispersed on the surface of g‐C3N4. Moreover, the photocatalytic H2 generation activity of the samples was evaluated using lactic acid as sacrificial reagent in water under visible light irradiation. When the amount of CdS nanospheres loaded in the hybridized composites was 5 wt%, the optimal H2 evolution rate reached 924 μmol g?1 h?1, which was approximately 1.4 times higher than that (680 μmol g?1 h?1) of Pt/g‐C3N4 (3 wt%). Based on the results of analysis, a possible mechanism for the photocatalytic activity of CSCN is proposed tentatively.  相似文献   

11.
Heterojunctions of g‐C3N4/Al2O3 (g‐C3N4=graphitic carbon nitride) are constructed by an in situ one‐pot hydrothermal route based on the development of photoactive γ‐Al2O3 semiconductor with a mesoporous structure and a high surface area (188 m2g?1) acting as electron acceptor. A structure modification function of g‐C3N4 for Al2O3 in the hydrothermal process is found, which can be attributed to the coordination between unoccupied orbitals of the Al ions and lone‐pair electrons of the N atoms. The as‐synthesized heterojunctions exhibit much higher photocatalytic activity than pure g‐C3N4. The hydrogen generation rate and the reaction rate constant for the degradation of methyl orange over 50 % g‐C3N4/Al2O3 under visible‐light irradiation (λ>420 nm) are 2.5 and 7.3 times, respectively, higher than those over pristine g‐C3N4. The enhanced activity of the heterojunctions is attributed to their large specific surface areas, their close contact, and the high interfacial areas between the components as well as their excellent adsorption performance, and efficient charge transfer ability.  相似文献   

12.
Crystals of 5‐chloropyridin‐2‐amine–(2E)‐but‐2‐enedioate (2/1), 2C5H5ClN2·C4H4O4, (I), and 2‐aminopyridinium dl ‐3‐carboxy‐2‐hydroxypropanoate, C5H7N2+·C4H5O5, (II), are built from the neutral 5‐chloropyridin‐2‐amine molecule and fumaric acid in the case of (I) and from ring‐N‐protonated 2‐aminopyridinium cations and malate anions in (II). The fumaric acid molecule lies on an inversion centre. In (I), the neutral 5‐chloropyridin‐2‐amine and fumaric acid molecules interact via hydrogen bonds, forming two‐dimensional layers parallel to the (100) plane, whereas in (II), oppositely charged units interact via ionic and hydrogen bonds, forming a three‐dimensional network.  相似文献   

13.
Six mono/double‐layered 2D and three 3D coordination polymers were synthesized by a self‐assembly reaction of Zn (II) salts, organic dicarboxylic acids and L1/L2 ligands. These polymeric formulas are named as [Zn(L1)(C4H2O4)0.5 (H2O)]n·0.5n(C4H2O4)·2nH2O ( 1 ), [Zn2(L2)(C4H2O4)2]n·2nH2O ( 2 ), [Zn(L1)(m‐BDC)]n ( 3 ), [Zn2(L2)(m‐BDC)2]n·2nH2O ( 4 ), [Zn3(L1)2(p‐BDC)3(H2O)4]n·2nH2O ( 5 ), [Zn2(OH)(L2) (p‐BDC)1.5]n ( 6 ), [Zn2(L1)(p‐BDC)2]n·5nH2O ( 7 ), [Zn2(L2)(p‐BDC)2]n·3nH2O ( 8 ) and [Zn2(L1)(C4H4O4)1.5(H2O)]n·n(ClO4nH2O ( 9 ) [L1 = N,N′‐bis (pyridin‐4‐ylmethyl)propane‐1,2‐diamine, L2 = N,N′‐bis (pyridin‐3‐ylmethyl)propane‐1,2‐ diamine, m‐BDC2? = m‐benzene dicarboxylate, p‐BDC2? = p‐benzene dicarboxylate]. Meanwhile, these polymers have been characterized by elemental analysis, infrared, thermogravimetry (TG), photoluminescence, powder and single‐crystal X‐ray diffraction. Polymers 1–6 present mono‐ and double (4,4)‐layer motifs accomplished by L1/L2 ligands with diverse conformations and organic dicarboxylates, and the layer thickness locates in the range of 5.8–15.0 Å. In three 3D polymers, the L1 and L2 molecules adopt the same cis‐conformations and join adjacent Zn (II) cations together with p‐BDC2? or succinate, giving rise to different binodal (4,4)‐c nets with (4.52.83)(4.53.72) ( 7 ), pts ( 8 ) topology and twofold interpenetrated binodal (5,5)‐c nets with (32.44.52.62)(3.43.52.64) ( 9 ). Therefore, the diverse conformations of the two bis (pyridyl)‐propane‐1,2‐diamines and the feature of different organic dicarboxylate can effectively influence the architectures of these polymers. Powder X‐ray diffraction patterns demonstrate that these bulk solid polymers are pure phase. TG analyses indicate that these polymers have certain thermal stability. Luminescent investigation reveals that the emission maximum of these polymers varies from 402 to 449 nm in the solid state at room temperature. Moreover, 1 , 3 and 5–8 show average luminescence lifetimes from 8.81 to 16.30 ns.  相似文献   

14.
In this study, high surface area activated carbon (AC) was prepared from a local palm tree (Phoenix Dactylifera) using a variety of metal carbonates activators and finally achieved an excellent SBET of 2700 m2/g when Cs2CO3 was used as an activating agent at a temperature of 600 °C. Surface modification of AC was carried out using various nitrogen transporting agents, resulting in N-doped ACs with nitrogen content varying from 4.0 to 11.4 %, depending on the functionalizing agents and activators used. The bimodal (presence of micro- as well as meso-porosity) ACs with such excellent surface properties were studied for their CO2 uptake capacity at two different temperatures (0 and 25 °C) by isotherms recorded at pressure 1 bar and showed a remarkable uptake ability of 3.52 mmol/g (at 25 °C) and 5.6 mmol/g (at 0 °C), respectively. Also, batch experiments with variable pH, contact time, adsorbate concentrations, adsorbent dose, and temperatures were evaluated to understand the mechanism of sorption phenomena of Cr(VI) and Pb(II) achieving > 99.9 % removal capacity by the prepared ACs. Depending on the heavy metal ions being investigated, it was revealed that the pH of the solution and the amount of adsorbent had a direct impact on the total adsorption ability. Nitrogen atoms doped into the carbon frameworks were found to enhance the adsorption in the case of Pb(II) while the removal of Cr(VI) appeared to be unaffected. Maximum adsorption for Cr(VI) was observed at pH 2 and was determined to follow Freundlich isotherm while that of Pb(II) was observed at pH 7 and follows Langmuir isotherm. Best adsorption was found at an adsorbate concentration of 10 ppm and an adsorbent dose of 10 g/L. Kinetic modeling parameters showed the applicability of pseudo-second-order model perfectly.  相似文献   

15.
Two‐dimensional (2D) graphitic carbon nitride (g‐C3N4) nanosheets show brilliant application potential in numerous fields. Herein, a membrane with artificial nanopores and self‐supporting spacers was fabricated by assembly of 2D g‐C3N4 nanosheets in a stack with elaborate structures. In water purification the g‐C3N4 membrane shows a better separation performance than commercial membranes. The g‐C3N4 membrane has a water permeance of 29 L m−2 h−1 bar−1 and a rejection rate of 87 % for 3 nm molecules with a membrane thickness of 160 nm. The artificial nanopores in the g‐C3N4 nanosheets and the spacers between the partially exfoliated g‐C3N4 nanosheets provide nanochannels for water transport while bigger molecules are retained. The self‐supported nanochannels in the g‐C3N4 membrane are very stable and rigid enough to resist environmental challenges, such as changes to pH and pressure conditions. Permeation experiments and molecular dynamics simulations indicate that a novel nanofluidics phenomenon takes place, whereby water transport through the g‐C3N4 nanosheet membrane occurs with ultralow friction. The findings provide new understanding of fluidics in nanochannels and illuminate a fabrication method by which rigid nanochannels may be obtained for applications in complex or harsh environments.  相似文献   

16.
In the present study, novel hydroxyethyl cellulose/silica/graphitic carbon nitride (HEC/SiO2/C3N4) solid foams with hierarchical porous structure have been successfully fabricated with gas bubbles template combination with freeze-drying method. Compared with HEC/SiO2/C3N4-50 without gas foaming, the HEC/SiO2/C3N4-80 with air bubbles template had larger pore volume and higher porosity and specific surface area, which not only exhibited faster adsorption rate, but also presented higher saturated adsorption capacity towards methylene blue (MB) and methyl violet (MV). From the experimental results, it was found that HEC/SiO2/C3N4-80 had high adsorption capacities of 132.45 mg/g and 206.62 mg/g for MB and MV, respectively, and the adsorption process fitted the Langmuir adsorption isotherm and pseudo-second-order rate equation. Additionally, benefiting from its higher adsorption capacity and light-harvesting capability, HEC/SiO2/C3N4-80 exhibited relatively higher photocatalytic degradation efficiencies against MB and MV under visible light irradiation than HEC/SiO2/C3N4-50. More importantly, compared with the bare g-C3N4 powder, the HEC/SiO2/C3N4 solid foams could be more easily separated from the treated water, which facilitated their recycle and reuse. Therefore, the good adsorption capacity, high photocatalytic degradation activity and recyclability of the HEC/SiO2/C3N4 solid foam made it a promising candidate for the removal of organic dyes from wastewater.  相似文献   

17.
《先进技术聚合物》2018,29(1):319-328
The equilibrium adsorption isotherms of carbon dioxide and nitrogen on the nitrogen doped activated carbon (NAC) prepared by the chemical activation of a pine cone‐based char/polyaniline composite were measured using a volumetric technique. CO2 and N2 adsorption experiments were done at three different temperatures (298, 308, and 318 K) and pressures up to 16 bar, and correlated with the Langmuir, Freundlich, and Sips models. The Sips isotherm model presented the best fit to the experimental data. The N‐doped adsorbent showed CO2 and N2 adsorption capacity of 3.96 mmol·g−1 and 0.86 mmol·g−1, respectively, at 298 K and 1 bar. The selectivity predicted by ideal adsorbed solution theory (IAST) model was achieved 47.17 for NAC at 1 bar and yN2 = 0.85 which is a composition similar to flue gas. The results showed that NAC adsorbent has a high CO2‐over‐N2 selectivity in a binary mixture. The relatively fast sorption rate of CO2 on NAC compared to N2 indicates the stronger affinity between CO2 and amine groups. The isosteric heat of adsorption of CO2 by the NAC demonstrated the physico‐chemical adsorption of CO2 on the adsorbent surface. These data showed that prepared NAC could be successfully applied in separation of CO2 from N2.  相似文献   

18.
Excessive heavy metals in the water constitute a health hazard to humans, yet it may be efficiently purified using adsorbents. Herein, for the first time, UiO-66-NH2 was modified by Glycidyl methacrylate (GMA) via microwave heating method to investigate its potential for adsorption of Pb(II) and Cd(II) metal ions. Synthesized MOF was characterized by TGA, XRD, BET, FE-SEM-EDX, and FTIR. The MOF has a huge surface area of 1144 m2/g, a mean pore diameter of 2.84 nm, and a total pore volume of 0.37 cm3/g. The effect of UiO-66-GMA performance was evaluated by investigating the impact of pH (1–9), contact time (0–200 min), initial metal ions concentration (20–1000 mg/L), temperature (25–55 °C), adsorbent dosage (0.5–3 g/L), and co existences of other metals was investigated on Pb(II) and Cd(II) percentage removal. Following an analysis of the adsorption isotherms, kinetics, and thermodynamics, the Temkin isothermal model showed an excellent fit with the adsorption data (R2 = 0.99). The adsorption process was a spontaneous endothermic reaction and kinetically followed the pseudo-second-order kinetics model. Microwave heating method produced highly crystalline small Zr-MOF nanoparticles with a short reaction time. It promoted the simple yet highly efficient synthesis of Zr-based MOFs, as shown by the reaction mass space-time yield. The adsorption capability of Pb to the presence of several polar functional groups, including as primary and secondary amines, ester, alkene, and hydroxyl groups. This adsorbent is a potential candidate for wastewater treatment due to its outstanding structural stability in acidic and basic solutions, high removal efficiency, and recyclability.  相似文献   

19.
《Electroanalysis》2018,30(2):320-327
A novel molecularly imprinted polymer (MIP) photoelectrochemical sensor was fabricated for the highly sensitive and selective detection of triclosan. The MIP photoelectrochemical sensor was fabricated using graphite‐like carbon nitride (g‐C3N4) and gold nanoparticles (AuNPs) as photoelectric materials. The MIP/g‐C3N4‐AuNPs sensor used photocurrent as the detection signal and was triggered by ultraviolet light (UV‐Light 365 nm). g‐C3N4‐AuNPs was immobilized on indium tin oxide electrodes to produce the photoelectrochemically responsive electrode of the MIP/g‐C3N4‐AuNPs sensor. A MIP layer of poly‐o‐phenylenediamine was electropolymerized on the g‐C3N4‐AuNPs‐modified electrode to act as the recognition element of the MIP/g‐C3N4‐AuNPs sensor and to enable the selective adsorption of triclosan to the sensor through specific binding. Under optimal experimental conditions, the designed MIP/g‐C3N4‐AuNPs sensor presented high sensitivity for triclosan with a linear range of 2×10−12 to 8×10−10 M and a limit of detection of 6.01×10−13 M. Moreover, the MIP/g‐C3N4‐AuNPs sensor showed excellent selectivity. The sensor had been successfully applied in the analysis of toothpaste samples.  相似文献   

20.
This work describes a simple synthesis of complexes of the type [M(C32H28N4)Cl2], where M = Ni (II), Cu (II) and Fe (II) and a novel complex of magnetite nanoparticle (Fe3O4NP) inside (INS) tetraaza macrocyclic Schiff base ligand (C32H28N4): [Fe3O4NP‐INS‐(C32H28N4)], which was prepared by using a novel co‐precipitation method of coordinated ferric ion (Fe3+) in the complex [Fe(C32H28N4)Cl2] under mild conditions. The synthesized compounds were characterized and compared with a various physic‐chemical techniques like: Fourier transform infrared (FT‐IR), ultraviolet–visible spectroscopic techniques (UV–Vis), 1‐dimensional (1D) 1H‐NMR, 13C‐NMR spectroscopic techniques, mass spectra, Powder X‐ray diffraction (PXRD), Vibrating sample magnetometer (VSM), Scanning electron microscopy (SEM), elemental analysis and molar conductance measurements. Furthermore, the highest saturation magnetization was 26.56 emu.g?1 obtained from [Fe3O4NP‐INS‐(C32H28N4)] (diameter of Fe3O4NPs~20.87 nm) that prove easy separation by an external magnetic field. In vitro screening of all the compounds against different species of bacteria and fungi shows that [Fe3O4NP‐INS‐(C32H28N4)] is effective against the tested strains as compared to the tetraaza macrocyclic ligand and selected complexes. The cytotoxic activity of the all compounds was also examined in 3 human tumor cell lines as U87, MDA‐MB‐231 and LS‐174. The complex [Fe3O4NP‐INS‐(C32H28N4)] shows moderate and strong cytotoxic activity against brain cancer, colon cancer and breast cancer (U87, MDA‐MB‐231 and LS‐174 respectively), without showing cytotoxicity towards peripheral blood mononucleocyte (PBMC) cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号