共查询到20条相似文献,搜索用时 15 毫秒
1.
Starch nanoparticle (SNP)‐based pressure sensitive adhesives (PSAs) with core‐shell particle morphology (starch nanoparticle core/acrylic polymer shell) are produced via seeded, semi‐batch emulsion polymerization at 15 wt% SNP loading (relative to total polymer weight) and 40 wt% latex solids. Crosslinker and chain transfer agent (CTA) are introduced to the acrylic shell polymer formulation at a range of concentrations according to a 32 factorial design to tailor the latex and adhesive properties of SNP‐based latexes. The crosslinker and CTA show no significant effect on polymerization kinetics, particle size, and viscosity. Latex gel content is predicted using an empirical model, which is a function of crosslinker and CTA concentration. Both the gel content and glass transition temperature strongly affect the adhesive properties (tack, peel strength, and shear strength) of the SNP‐based latex films. 3D response surfaces for the adhesive properties are constructed to facilitate the design of SNP‐based PSAs with desired properties. 相似文献
2.
《大分子反应工程》2018,12(3)
Cellulose nanocrystals (CNCs) are safe, “green,” hydrophilic nanoparticles. CNCs are added in situ during a semibatch 2‐ethyl hexyl acrylate (EHA)/n‐butyl acrylate (BA)/methyl methacrylate (MMA) emulsion polymerization. As EHA is a more hydrophobic monomer, manipulation of the monomer feed composition allows for the evaluation of the effect of hydrophobicity on CNC distribution in the nanocomposite and ultimately on adhesive properties. The adhesive properties (loop tack, peel strength, and shear strength) of three different EHA/BA/MMA latex formulations are shown to simultaneously improve with increasing CNC loading. However, the hydrophobicity of the EHA leads to a nonuniform distribution of CNCs in the latex films. Comparison of the in situ polymerized nanocomposites to their blended counterparts is also made. 相似文献
3.
Summary: Free radical emulsion polymerization of styrene (S) or butyl acrylate (BA) in the presence of latices of linear polyethylene (PE) prepared by catalytic emulsion polymerization affords colloidally stable multiphase latices. Coagulation of a PE/PS latex affords nanocomposites composed of small PE phases dispersed in a PS matrix, as evidenced by the large supercoolings of PE crystallization (by DSC). TEM of PE/PBA latices indicates a PBA phase around the PE particles under the emulsion polymerization conditions investigated. Films formed from these dispersions exhibit homogeneously dispersed PE particles.
4.
Tae H. Kim Lee W. Jang Dong C. Lee Hyoung J. Choi Myung S. Jhon 《Macromolecular rapid communications》2002,23(3):191-195
Polystyrene (PS)/clay nanocomposites were synthesized by the emulsion polymerization of styrene in the presence of sodium ion‐exchanged montmorillonite (Na+‐MMT), demonstrating that the strongly hydrophobic PS was intercalated into the hydrophilic silicate layers. The nanocomposites were examined by means of X‐ray diffraction, transmission electron microscopy, thermogravimetric analysis. The rheological properties of the PS/Na+‐MMT nanocomposites were also studied to exhibit more pronounced shear thinning behavior with increasing clay content. 相似文献
5.
Weiren Cheng Guan Wang Jatin Nitin Kumar Ye Liu 《Macromolecular rapid communications》2015,36(23):2102-2106
A surfactant‐free emulsion‐based approach is developed for preparation of nanogels. A water‐in‐oil emulsion is generated feasibly from a mixture of water and a solution of disulfide‐containing hyperbranched PEGylated poly(amido amine)s, poly(BAC2‐AMPD1)‐PEG, in chloroform. The water droplets in the emulsion are stabilized and filled with poly(BAC2‐AMPD1)‐PEG, and the crosslinked poly(amido amine)s nanogels are formed via the intermolecular disulfide exchange reaction. FITC‐dextran is loaded within the nanogels by dissolving the compound in water before emulsification. Transmission electron microscopy and dynamic light scattering are applied to characterize the emulsion and the nanogels. The effects of the homogenization rate and the ratio of water/polymer are investigated. Redox‐induced degradation and FITC‐dextran release profile of the nanogels are monitored, and the results show efficient loading and redox‐responsive release of FITC‐dextran. This is a promising approach for the preparation of nanogels for drug delivery, especially for neutral charged carbohydrate‐based drugs.
6.
Monika Goikoetxea María J. Barandiaran José M. Asua 《Journal of polymer science. Part A, Polymer chemistry》2007,45(24):5838-5846
The mechanisms involved in the formation of n‐butanol during the synthesis of butyl acrylate containing latices were investigated. The experimental results showed that neither the hydrolysis of butyl acrylate nor of the ester bond in the butyl acrylate segments of the polymer played a major role in the formation of n‐butanol, which was mainly generated from the polymer backbone, by transfer reactions to polymer chain followed by cyclization. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5838–5846, 2007 相似文献
7.
Takashi Tsujimoto Hiroshi Uyama Shiro Kobayashi 《Macromolecular rapid communications》2003,24(12):711-714
Green nanocomposite coatings based on renewable plant oils have been developed. An acid‐catalyzed curing of epoxidized plant oils with 3‐glycidoxypropyltrimethoxysilane produced transparent nanocomposites. The hardness and mechanical strength improved by incorporating the silica network into the organic polymer matrix, and good flexibility was observed in the nanocomposite. The nanocomposites showed high biodegradability.
8.
Wen Hong Ruan Xian Bo Huang Xian Hou Wang Min Zhi Rong Ming Qiu Zhang 《Macromolecular rapid communications》2006,27(8):581-585
Summary: A new route that combines graft pre‐treatment and drawing techniques with melt mixing to prepare nanoparticle‐filled thermoplastic polymer composites is reported. Nano‐SiO2 particles are first modified by graft polymerization and then the grafted nanoparticles are melt‐compounded with poly(propylene) (PP) to produce composite filaments via drawing. Finally, the filaments are injection molded into bulk materials. Because the proposed manufacturing method is able to induce separation of the nanoparticles and the formation of beta‐crystals in the PP matrix, the resultant PP‐based nanocomposites are much tougher than the unfilled polymers, as characterized by either static or dynamic tests, in addition to showing a simultaneous increase in strength and stiffness.
9.
Summary: A novel non‐aqueous emulsion system, consisting of cyclohexane as the continuous and acetonitrile as the dispersed phase, is described. Stabilization of the system can be achieved by using polyisoprene‐block‐poly(methyl methacrylate) copolymers as emulsifiers. The suitability of this system for performing water‐sensitive, catalytic, and oxidative polymerizations and polycondensations is demonstrated by the synthesis of poly(3,4‐ethylenedioxythiophene), poly(thiophene‐3‐yl‐acetic acid), and polyacetylene. In all cases spherical nanoparticles with diameters as small as 23 nm can be obtained.
10.
Nermeen Nabih Katharina Landfester Andreas Taden 《Journal of polymer science. Part A, Polymer chemistry》2011,49(23):5019-5029
A universal method for the synthesis of water‐based inorganic–polymer hybrid particles was developed in which no organic solvent is required. To demonstrate the versatility of this process, zinc phosphate, calcium carbonate, and barium sulfate were chosen as different pigment examples which additionally can be utilized for functional coating applications. Furthermore, a complex polymeric composition based on epoxy–acrylic–styrene was chosen to illustrate the versatility from a soft matter point of view. The overall synthesis process was carried out by coemulsification of two inverse miniemulsions, containing two precursors, surrounded with a polymerizable continuous phase. This was then transferred to a direct miniemulsion by addition to a surfactant solution and subsequent homogenization followed by radical polymerization of the vinylic monomers. To our knowledge, this is the first work where a polymerizable continuous phase has been used in an inverse miniemulsion formation followed by transfer to a direct miniemulsion, followed by polymerization, so that the result is a water‐based dispersion. The resultant dispersion was characterized by dynamic light scattering; the particles were investigated via transmission electron microscopy with in situ determination of crystallinity using electron diffraction. Elemental analysis was also performed for the particles and the polymerized miniemulsions using X‐ray fluorescence and inductively coupled plasma‐optical emission spectroscopy, respectively. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011 相似文献
11.
12.
Onur Yilmaz Mikko Karesoja A. Candas Adiguzel Gokhan Zengin Heikki Tenhu 《Journal of polymer science. Part A, Polymer chemistry》2014,52(10):1435-1447
Functional polymer/AgNPs nanocomposites have been prepared. Silver nanoparticles (NPs) were synthesized to which polyacrylamide, PAAm, was covalently bound. PAAm was synthesized via a RAFT reaction and carried thiol and carboxylic acid end groups. Thiol was used to bind the polymer to the metal surface and carboxyl for further reactions. The AgNPs were used in a post‐crosslinking reaction with a separately synthesized poly(butyl acrylate‐co‐methyl methacrylate)/polyglycidyl methacrylate core/shell latex bearing epoxy functional groups. Dynamic mechanical analysis showed that the functional AgNPs effectively crosslinked the latex polymer, and that the final product had excellent mechanical strength. Antibacterial tests revealed that the nanocomposite films had strong antibacterial activity against all types of the bacteria and the immobilization of silver NPs by crosslinking retarded the release of silver in comparison to the uncrosslinked ones. With the presented method, it is possible to obtain ductile antibacterial nanocomposites to be used as waterborne functional coatings. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1435–1447 相似文献
13.
14.
《Journal of polymer science. Part A, Polymer chemistry》2018,56(4):420-429
Polymerization‐induced self‐assembly (PISA) has become the preferred method of preparing self‐assembled nano‐objects based on amphiphilic block copolymers. The PISA methodology has also been extended to the realization of colloidal nanocomposites, such as polymer–silica hybrid particles. In this work, we compare two methods to prepare nanoparticles based on self‐assembly of block copolymers bearing a core‐forming block with a reactive alkoxysilane moiety (3‐(trimethoxysilyl)propyl methacrylate, MPS), namely (i) RAFT emulsion polymerization using a hydrophilic macroRAFT agent and (ii) solution‐phase self‐assembly upon slow addition of a selective solvent. Emulsion polymerization under both ab initio and seeded conditions were studied, as well the use of different initiating systems. Effective and reproducible chain extension (and hence PISA) of MPS via thermally initiated RAFT emulsion polymerization was compromised due to the hydrolysis and polycondensation of MPS occurring under the reaction conditions employed. A more successful approach to block copolymer self‐assembly was achieved via polymerization in a good solvent for both blocks (1,4‐dioxane) followed by the slow addition of water, yielding spherical nanoparticles that increased in size as the length of the solvophobic block was increased. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 420–429 相似文献
15.
Summary: The synthesis of well‐defined uniform and spherical sub‐micron polymeric spheres, specifically poly[styrene‐co‐(glycidyl methacrylate)] (PSGMA) with a uniform size distribution and surface chemical functionality, is described. It is shown that the surface can be modified with a multi‐amine functional polymer, polyethyleneimine (PEI), most likely through covalent bonding in addition to electrostatic attraction. The PEI acts both as a stabilizing agent and a complexation agent for the deposition of noble metal Ag nanoparticles.
16.
Alexander Dundua Katharina Landfester Andreas Taden 《Macromolecular rapid communications》2014,35(21):1872-1878
Hydrophobic association and stimuli‐responsiveness is a powerful tool towards water‐based adhesives with strongly improved properties, which is demonstrated based on the example of hydrophobically modified alkali‐soluble latexes (HASE) with modulated association. Their rheological properties are highly tunable due to the hydrophobic domains that act as physical crosslinking sites of adjustable interaction strength. Ethanol, propanol, and butanol are used as water‐soluble model additives with different hydrophobicity in order to specifically target the association sites and impact the viscoelastic properties and stimuli‐responsiveness. The rheological and mechanical property response upon dilution with water can be tailored, and dilution‐resistant or even dilution‐thickening systems are obtained. The investigations are of high importance for water‐based adhesives, as our findings provide insight into general structure–property relationships to improve their setting behavior, especially upon contact with wet substrates.
17.
Hongbin Lu Hongbin Shen Zhenlun Song Katherine S. Shing Wei Tao Steven Nutt 《Macromolecular rapid communications》2005,26(18):1445-1450
Summary: Epoxy nanocomposites containing rod‐like silicate (attapulgite) were prepared using a simple organic modification to the nanorods. The modification led to effective interfacial adhesion between the ceramic nanorods and the epoxy resin and hence good load transfer. Scanning electron microscopy examination revealed a uniform dispersion of nanorods in the epoxy resin. Compared to the neat resin, nanocomposites with 7.47 vol.‐% nanorods exhibited an increase in the (rubbery state) storage modulus of 122.5%. In addition, the nanocomposites exhibited improved dimensional stability both above and below the Tg.
18.
Gold nanoparticles with hydrophobic polystyrene (PS) and hydrophilic poly[poly(ethylene glycol) methyl ether methacrylate] (PPEGMA) mixed polymer brushes are prepared. Different morphologies of the nanoparticles can be observed in chloroform (a common solvent for both of the polymers) and water (a precipitant for PS and a good solvent for PPEGMA). The nanoparticles can be used as surfactants in Pickering suspension polymerization. Upon addition of nanoparticles to a mixture of oil and water, the nanoparticles locate at the interface and the size of the oil droplets gets smaller. After polymerization of styrene oil droplets PS colloid particles with gold nanoparticles on the surface can be obtained.
19.
Zhenping Cheng Qinmin Pan Garry L. Rempel 《Journal of polymer science. Part A, Polymer chemistry》2010,48(10):2057-2062
A novel method for the synthesis of polyacrylonitrile (PAN)‐coated multiwall carbon nanotubes (MWCNTs) via a simple soap‐free emulsion polymerization is presented for the first time. The polymerization was initiated with conventional anionic ammonium persulfate (APS) at 65 °C. The modification of PAN on MWCNT surfaces was confirmed by Fourier‐transform infrared (FT‐IR) spectroscopy, X‐ray photoelectron spectra (XPS), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), and Raman spectroscopy. It is found that all the surfaces of the MWCNTs were coated by PAN chains, and the PAN coating thickness could be controlled by simply adjusting the polymerization time. The obtained PAN‐coated MWCNTs could be well dispersed in water. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2057–2062, 2010 相似文献
20.
Jonathan David Lpez-Lugo Reinher Pimentel-Domínguez Jorge Alejandro Benítez-Martínez Juan Hernndez-Cordero Juan Rodrigo Vlez-Cordero Francisco Manuel Snchez-Arvalo 《Molecules (Basel, Switzerland)》2021,26(17)
We demonstrate a novel structure based on smart carbon nanocomposites intended for fabricating laser-triggered drug delivery devices (DDDs). The performance of the devices relies on nanocomposites’ photothermal effects that are based on polydimethylsiloxane (PDMS) with carbon nanoparticles (CNPs). Upon evaluating the main features of the nanocomposites through physicochemical and photomechanical characterizations, we identified the main photomechanical features to be considered for selecting a nanocomposite for the DDDs. The capabilities of the PDMS/CNPs prototypes for drug delivery were tested using rhodamine-B (Rh-B) as a marker solution, allowing for visualizing and quantifying the release of the marker contained within the device. Our results showed that the DDDs readily expel the Rh-B from the reservoir upon laser irradiation and the amount of released Rh-B depends on the exposure time. Additionally, we identified two main Rh-B release mechanisms, the first one is based on the device elastic deformation and the second one is based on bubble generation and its expansion into the device. Both mechanisms were further elucidated through numerical simulations and compared with the experimental results. These promising results demonstrate that an inexpensive nanocomposite such as PDMS/CNPs can serve as a foundation for novel DDDs with spatial and temporal release control through laser irradiation. 相似文献