首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Four half‐sandwich iridiumIII (IrIII) triphenylamine or carbazole‐modified 2‐phenylpyridine (TPA/Cz‐PhPy) complexes ([(η5‐Cp*)Ir(C^N)Cl]) were synthesized and characterized. Compared with cisplatin, these complexes show higher activity to A549, HepG2 and HeLa cells, with the IC50 values changed from 2.5 ± 0.1 μM to 14.8 ± 2.6 μM. Additionally, complexes could effectively prevent the migration of cancer cells. IrIII TPA/Cz‐PhPy complexes could bind to protein and transport through serum protein, catalyze the oxidation of nicotinamide‐adenine dinucleotid (NADH) and induce the accumulation of reactive oxygen species, and eventually lead to apoptosis, which was also confirmed by flow cytometry. Moreover, prominent targeted fluorescence property confirmed that IrIII TPA/Cz‐PhPy complexes were involved in non‐energy dependent intracellular uptake mechanism, effectively accumulated in lysosomes and damage the integrity of acidic lysosomes, and eventually induce cell death. Above all, TPA/Cz‐appended half‐sandwich IrIII phenylpyridine complexes are promising anticancer agents with dual functions, including migration inhibition and lysosomal damage.  相似文献   

2.
Fifteen organometallic Ir(III) half‐sandwich complexes ( 1A – 5C ) having the general formula [(η5‐Cpx)Ir(N^N)Cl]PF6 (Cpx = Cp*, tetramethyl(phenyl)cyclopentadienyl (Cpxph) or tetramethyl(biphenyl)cyclopentadienyl (Cpxbiph); N^N = diamine) have been synthesized and characterized. The molecular structure of 1A was determined using single‐crystal X‐ray diffraction analysis. The hydrolysis of 1A – 5C was monitored using UV–visible spectra. Complexes 3A – 3C showed catalytic activity for the oxidation of NADH to NAD+, where 3C showed the highest turnover number of 29.9 within 450 min. Cytotoxicity examination by MTT assay was carried out against two human cancer cell lines (HeLa and A549) after 24 or 48 h drug treatment. The complexes showed high potency, where the most potent complex ( 3C ; IC50 = 3.4 μM) was six times more active than cisplatin against A549 cells after 24 h drug exposure. Cytotoxic potency towards A549 cells increased with phenyl substitution on Cp ring: Cpxbiph > Cpxph > Cp*. In addition, the biological studies showed that 3C caused cell apoptosis and cell cycle arrest at G1 phase in A549 cancer cells. Moreover, 3C increased the level of reactive oxygen species markedly after 24 h, which may provide an important basis for killing cancer cells. Confocal laser scanning microscopy was used to track 3C in A549 cells. The cellular localization experiment showed that 3C targeted lysosomes and caused lysosomal damage.  相似文献   

3.
Four different mononuclear palladium(II) complexes of 3‐acetyl‐8‐methoxycoumarin Schiff bases were synthesized and characterized by spectrochemical techniques. Further analysis through X‐ray crystallography confirmed the structures of the complexes. Their interactive ability with Calf Thymus DNA and protein (Bovine Serum Albumin and Human Serum Albumin) were investigated by means of absorption and emission methods. The intercalative mode of binding with DNA was supported by EB displacement studies and viscosity measurements. Configurational changes that occurred in the proteins have been analysed with the help of 3D fluorescence studies. The complexes were shown to have good antimicrobial activity against the tested bacterial and fungal pathogens. In addition, antiproliferative activity of the complexes was evaluated on A549 and MCF‐7 cell lines and the complexes were comparatively more active than the standard drug cisplatin. Among the compounds, complex 3 was the most effective against MCF‐7 (IC50 value of 5.20 ± 0.15 μM) and A549 (5.09 ± 0.13 μM) compared with the other complexes 1 (6.48 ± 0.17 μM; 5.98 ± 0.09 μM), 2 (5.53 ± 0.12 μM; 5.85 ± 0.11 μM), 4 (6.73 ± 0.19 μM; 6.63 ± 0.16 μM) and cisplatin (16.79 ± 0.08 μM; 15.10 ± 0.05 μM) respectively. LDH and NO release assays confirmed the cytotoxic potential of the synthesized complexes.  相似文献   

4.
RuII–bis‐pyridine complexes typically absorb below 450 nm in the UV spectrum and their molar extinction coefficients are only moderate (ε<16 000 M ?1 cm?1). Thus, RuII–polyimine complexes that show intense visible‐light absorptions are of great interest. However, no effective light‐harvesting ruthenium(II)/organic chromophore arrays have been reported. Herein, we report the first visible‐light‐harvesting RuII–coumarin arrays, which absorb at 475 nm (ε up to 63 300 M ?1 cm?1, 4‐fold higher than typical RuII–polyimine complexes). The donor excited state in these arrays is efficiently converted into an acceptor excited state (i.e., efficient energy‐transfer) without losses in the phosphorescence quantum yield of the acceptor. Based on steady‐state and time‐resolved spectroscopy and DFT calculations, we proposed a general rule for the design of RuII–polypyridine–chromophore light‐harvesting arrays, which states that the 1IL energy level of the ligand must be close to the respective energy level of the metal‐to‐ligand charge‐transfer (M LCT) states. Lower energy levels of 1IL/3IL than the corresponding 1M LCT/3M LCT states frustrate the cascade energy‐transfer process and, as a result, the harvested light energy cannot be efficiently transferred to the acceptor. We have also demonstrated that the light‐harvesting effect can be used to improve the upconversion quantum yield to 15.2 % (with 9,10‐diphenylanthracene as a triplet‐acceptor/annihilator), compared to the parent complex without the coumarin subunit, which showed an upconversion quantum yield of only 0.95 %.  相似文献   

5.
Six complexes with chiral Schiff‐base ligands containing TPP+ groups, [VO L R,R/S,S](ClO4)2( 1 for RR, 2 for SS), [Ni L R,R/S,S](ClO4)2·C2H5OH ( 3 for RR, 4 for SS) and [CuLR,R/S,S](ClO4)2·CHCl3·CH3CH2OH ( 5 for RR, 6 for SS) ( L R,R/S,S = N,N′‐Bis{5‐[(triphenylphosphonium)‐methyl]salicylidine}‐(1R,2R/1S,2S)‐diphenylethane‐1,2‐diamine, were synthesized to serve as mitochondrion‐targeting anticancer drugs. The introduction of TPP+ group(s) might markedly influence the properties of complexes. Compounds 3 and 5 were structurally characterized by X‐ray crystallography. Complexes 1–6 could be moderate intercalating agents to CT‐DNA which is determined by several spectroscopy methods. DNA cleavage experiments revealed that all compounds could promote oxidative cleavage of pBR322 plasmid DNA in the presence of H2O2. MTT assay indicated 1–6 exhibited effective cytotoxicity on A549 and MCF‐7 cell lines. Notably, the IC50 values of 5 (1.24 ± 0.33 μM) or 6 (1.47 ± 0.52 μM) were approximately 9–11 fold lower than that of cisplatin (IC50 = 13.56 ± 0.88 μM) on A549 cells. 5 and 6 were picked for further study, which indicated that the cytotoxicity seems to result from multiple mechanisms of action, including effectively suppress the growth and proliferation of A549 cells, generation of reactive oxygen species, dissipation of mitochondrial membrane potential, cell cycle perturbation and apoptosis induction. Compounds 1–6 could highly accumulate in the mitochondria by means of ICP‐MS assay. This study demonstrates that 1–6 with mitochondrion‐targeting function could be efficient anticancer drugs.  相似文献   

6.
We demonstrate that RuII(CO)2–protein complexes, formed by the reaction of the hydrolytic decomposition products of [fac‐RuCl(κ2‐H2NCH2CO2)(CO)3] (CORM‐3) with histidine residues exposed on the surface of proteins, spontaneously release CO in aqueous solution, cells, and mice. CO release was detected by mass spectrometry (MS) and confocal microscopy using a CO‐responsive turn‐on fluorescent probe. These findings support our hypothesis that plasma proteins act as CO carriers after in vivo administration of CORM‐3. CO released from a synthetic bovine serum albumin (BSA)–RuII(CO)2 complex leads to downregulation of the cytokines interleukin (IL)‐6, IL‐10, and tumor necrosis factor (TNF)‐α in cancer cells. Finally, administration of BSA–RuII(CO)2 in mice bearing a colon carcinoma tumor results in enhanced CO accumulation at the tumor. Our data suggest the use of RuII(CO)2–protein complexes as viable alternatives for the safe and spatially controlled delivery of therapeutic CO in vivo.  相似文献   

7.
Hereby we present the synthesis of several ruthenium(II) and ruthenium(III) dithiocarbamato complexes. Proceeding from the Na[trans‐RuIII(dmso)2Cl4] ( 2 ) and cis‐[RuII(dmso)4Cl2] ( 3 ) precursors, the diamagnetic, mixed‐ligand [RuIIL2(dmso)2] complexes 4 and 5 , the paramagnetic, neutral [RuIIIL3] monomers 6 and 7 , the antiferromagnetically coupled ionic α‐[RuIII2L5]Cl complexes 8 and 9 as well as the β‐[RuIII2L5]Cl dinuclear species 10 and 11 (L=dimethyl‐ (DMDT) and pyrrolidinedithiocarbamate (PDT)) were obtained. All the compounds were fully characterised by elemental analysis as well as 1H NMR and FTIR spectroscopy. Moreover, for the first time the crystal structures of the dinuclear β‐[RuIII2(dmdt)5]BF4 ? CHCl3 ? CH3CN and of the novel [RuIIL2(dmso)2] complexes were also determined and discussed. For both the mono‐ and dinuclear RuII and RuIII complexes the central metal atoms assume a distorted octahedral geometry. Furthermore, in vitro cytotoxicity of the complexes has been evaluated on non‐small‐cell lung cancer (NSCLC) NCI‐H1975 cells. All the mono‐ and dinuclear RuIII dithiocarbamato compounds (i.e., complexes 6 – 10 ) show interesting cytotoxic activity, up to one order of magnitude higher with respect to cisplatin. Otherwise, no significant antiproliferative effect for either the precursors 2 and 3 or the RuII complexes 4 and 5 has been observed.  相似文献   

8.
We demonstrate that RuII(CO)2–protein complexes, formed by the reaction of the hydrolytic decomposition products of [fac‐RuCl(κ2‐H2NCH2CO2)(CO)3] (CORM‐3) with histidine residues exposed on the surface of proteins, spontaneously release CO in aqueous solution, cells, and mice. CO release was detected by mass spectrometry (MS) and confocal microscopy using a CO‐responsive turn‐on fluorescent probe. These findings support our hypothesis that plasma proteins act as CO carriers after in vivo administration of CORM‐3. CO released from a synthetic bovine serum albumin (BSA)–RuII(CO)2 complex leads to downregulation of the cytokines interleukin (IL)‐6, IL‐10, and tumor necrosis factor (TNF)‐α in cancer cells. Finally, administration of BSA–RuII(CO)2 in mice bearing a colon carcinoma tumor results in enhanced CO accumulation at the tumor. Our data suggest the use of RuII(CO)2–protein complexes as viable alternatives for the safe and spatially controlled delivery of therapeutic CO in vivo.  相似文献   

9.
A new family of trimetallic complexes of the form [(bpy)2M(phen‐Hbzim‐tpy)M′(tpy‐Hbzim‐phen)M(bpy)2]6+ (M=RuII, Os; M′=FeII, RuII, Os; bpy=2,2′‐bipyridine) derived from heteroditopic phenanthroline–terpyridine bridge 2‐{4‐[2,6‐di(pyridin‐2‐yl) pyridine‐4‐yl]phenyl}‐1H‐imidazole[4,5‐f][1,10]phenanthroline (phen‐Hbzim‐tpy) were prepared and fully characterized. Zn2+ was used to prepare mixed‐metal trimetallic complexes in situ by coordinating with the free tpy site of the monometallic precursors. The complexes show intense absorptions throughout the UV/Vis region and also exhibit luminescence at room temperature. The redox behavior of the compounds is characterized by several metal‐centered reversible oxidation and ligand‐centered reduction processes. Steady‐state and time‐resolved luminescence data show that the potentially luminescent RuII‐ and OsII‐based triplet metal‐to‐ligand charge‐transfer (3MLCT) excited states in the triads are quantitatively quenched, most likely by intercomponent energy transfer to the lower lying 3MLCT (for Ru and Os) or triplet metalcentered (3MC) excited states of the FeII subunit (nonluminescent). Interestingly, iron did not adversely affect the photophysics of the respective systems. This suggests that the multicomponent molecular‐wire‐like complexes investigated here can behave as efficient light‐harvesting antennas, because all the light absorbed by the various subunits is efficiently channeled to the subunit(s) in which the lowest‐energy excited states are located.  相似文献   

10.
RuII?PtII complexes are a class of bioactive molecules of interest as anticancer agents that combine a light‐absorbing chromophore with a cisplatin‐like unit. The results of a DFT and TDDFT investigation of a RuII complex and its conjugate with a cis‐PtCl2 moiety reveal that a synergistic effect of the metals makes the assembly a promising multitarget anticancer drug. Inspection of type I and type II photoreactions and spin–orbit coupling computations reveals that the cis‐PtCl2 moiety improves the photophysical properties of the RuII chromophore, ensuring efficient singlet oxygen generation and making the assembly suitable for photodynamic therapy. At the same time, the RuII chromophore promotes a new alternative activation mechanism of the PtII ligand via a triplet metal‐to‐ligand charge transfer (3M LCT) state, before reaching the biological target. The importance of the supramolecular architecture is accurately derived, opening interesting new perspectives on the use of bimetallic RuII?PtII assemblies in a combined anticancer approach.  相似文献   

11.
PtII complexes are commonly used to treat cancer. To reduce their side effects and improve their pharmacological properties, PtIV complexes are being developed as prodrug candidates that are activated by reduction in cancer cells. Concomitantly, RuII polypyridine complexes have gained much attention as photosensitizers for use in photodynamic therapy due to their attractive characteristics. In this article, a novel PtIV–RuII conjugate, which combines cancer activated chemotherapy with PDT, is presented. Upon entering the cancer cell, the PtIV centre is reduced to PtII and the axial ligands including the RuII complex and phenylbutyrate are released. As each component has its individual targets, the conjugate exerts a multi‐target and multi‐action effect with (photo‐)cytotoxicity values upon irradiation up to 595 nm in the low nanomolar range in various (drug resistant) 2D monolayer cancer cells and 3D multicellular tumour spheroids.  相似文献   

12.
Six novel mixed‐ligand copper(II) complexes, namely, [Cu(R‐tpy)(L)]NO3 ( 1–6 ), where R‐tpy is 4′‐phenyl‐2,2′:6′,2′′‐terpyridine (Ph‐tpy; 1–3 ) and 4′‐ferrocenyl‐2,2′:6′,2′′‐terpyridine (Fc‐tpy; 4–6 ), L is the bidentate O,O donor monoanion of plumbagin (5‐hydroxy‐2‐methyl‐1,4‐naphthoquinone; plum in 1 , 4 ), chrysin (5,7‐dihydroxyflavone; chry in 2 , 5 ) and curcumin (bis(4‐hydroxy‐3‐methoxyphenyl)‐1,6‐diene‐3,5‐dione; curc in 3 , 6 ) have been synthesized and characterized and their in vitro cytotoxicity against cancer cells is evaluated. The energy optimized structures and the frontier orbitals of the complexes have been obtained from the DFT calculations. Complexes 4–6 with a conjugated ferrocenyl moiety and TCM anticancer ligands, namely, plum (in 4 ), chry (in 5 ) and curc (in 6 ) showed potent cytotoxicity giving respective IC50 values of 1.2 μM, 0.62 μM and 0.21 μM in HeLa and 2.0 μM and 1.0 μM and 0.34 μM in MCF‐7 cancer cells while being much less toxic to MCF‐10A normal cells (IC50: 8.3‐17.1 μM). In contrast, complexes 1–3 with a conjugated phenyl moiety were appreciably less toxic to HeLa cells with respective IC50 values of 10.4 μM, 8.1 μM and 5.5 μM when compared with their ferrocenyl analogues 4–6 . Mechanistic studies using Hoechst staining and Annexin‐V‐FITC assays on cancer cells revealed an apoptotic pathway of cell death induced by the complexes. Fluorescence imaging study showed that complex 6 having curcumin as ligand localized primarily in the mitochondria of HeLa cells. Thus, we demonstrate in this study that ferrocene conjugation to copper(II) complexes of TCM anticancer ligands significantly increases the selectivity and cytotoxicity of the resulting complexes towards cancer cells over normal cells.  相似文献   

13.
The use of metal complexes containing phosphorus ligands as anticancer agents has not been well studied. In this work, eight novel half‐sandwich IrIII and RuII compounds with P^P‐chelating ligands have been synthesized and fully characterized, and alongside two crystal structures were reported. All eight complexes displayed highly potent antiproliferative activity, up to nine times more potent than the clinical anticancer drug cisplatin towards A549 lung cancer cells. Complex Ir1 , which has a simpler structure and highly potent antiproliferative activity, was selected to investigate in further mechanistic studies. No hydrolysis and nucleobase binding occurred for complex Ir1 . In order to elucidate subcellular localization, the self‐luminescence of the complex Ir1 was utilized. Ir1 can specifically target lysosomes and facilitate excessive production of reactive oxygen species, resulting in lysosomal membrane permeabilization in A549 cells. Release of cathepsin B and changes in the mitochondria membrane potential also contributed to the observed cytotoxicity of Ir1 , which demonstrated an anticancer action mechanism that was different from that of cisplatin. The favorable results from biological and chemical research demonstrated that these types of complexes hold significant theranostic potential.  相似文献   

14.
A simple and efficient process is developed for the synthesis of new N‐(1‐alkyl‐3‐chloro‐4‐ethoxy‐1H‐indazol‐5‐yl)‐arylsulfonamides 4a – d and N‐(1‐alkyl‐3‐chloro‐1H‐indazol‐5‐yl)‐arylsulfonamides 5a – d through the reduction of 1‐alkyl‐3‐chloro‐5‐nitroindazoles 2a , b with SnCl2 in ethanol followed by coupling the corresponding amine with arylsulfonyl chlorides in pyridine. All the newly synthesized compounds have been characterized by elemental analysis and spectroscopic data. Some compounds were tested for their in vitro antiproliferative activities against two selected human cancer cell lines A2780 and A549. Among all of these derivatives, compound 5d showed the most potent antiproliferative activity against A2780 (IC50 = 5.47 ± 1.45 μM) and A549 (IC50 = 7.73 ± 1.66 μM) cell lines.  相似文献   

15.
A series of twenty compounds inclusive of bidentate Schiff bases derived from condensation of 4‐methyl‐3‐thiosemicarbazide with substituted derivatives of napthaldehyde/benzaldehyde/salicylaldehyde and their mononuclear Co (II), Ni (II), Cu (II) and Zn (II) complexes in molar ratio (1:1) were synthesized and characterized. The coordination behavior, modes of bonding and overall geometry of the compounds was known from the elemental analysis, spectral techniques (IR, UV–Vis, 1H NMR, 13C NMR, ESR and ESI‐mass), magnetic moment measurements, molar conductance, thermal and powder XRD studies. The studies revealed octahedral geometry for all the complexes where ligands coordinated in a neutral bidentate manner (NS) via nitrogen atom of azomethine group and sulphur atom of thione group with the metal centre. In vitro biological effects of the compounds were tested against four bacterial species and two fungal strains. The results indicated that the metal complexes showed a marked enhancement in biocidal activity in comparable with the parent Schiff bases. In vitro anticancer activity against the malignant tumor cell lines; human alveolar adenocarcinoma epithelial cell line (A549), human breast adenocarcinoma cell line (MCF7), human prostate cancer cell line (DU145) and human normal lung cell line (MRC‐5) using MTT assay, exposed compound 16 as a leading member with lowest IC50 value of 10.6 ± 0.14 μM against (A549) cell line.  相似文献   

16.
A series of RuII heterodinuclear complexes of ABA ‐type with electron‐deficient bis‐terpyridines as building blocks was synthesized by (R‐tpy)RuIIICl3 complexation. These compounds were characterized by NMR spectroscopy, MALDI‐TOF, ESI‐TOF mass spectrometry, and elemental analysis. The results were compared with a coil‐rod‐coil RuII metallo‐supramolecular copolymer, which was synthesized by bis‐complex formation between a hydrophilic ω‐terpyridine poly(ethylene glycol) RuII mono‐complex and a hydrophobic bis‐terpyridine‐functionalized rigid core. This amphiphilic RuII triblock copolymer showed self‐assembly to clusters and micelles in aqueous solution, which was studied by transmission electron microscopy and dynamic light scattering. Applying velocity sedimentation experiments the number of amphiphilic RuII ABA triblock copolymer molecules within the micelles could be estimated. Finally, the photophysical properties of the RuII supramolecular assemblies were investigated by UV–vis spectroscopy. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

17.
A series of RuII–arene complexes ( 1 – 6 ) of the general formula [(η6‐arene)Ru(L)Cl]PF6 (arene=benzene or p‐cymene; L=bidentate β‐carboline derivative, an indole alkaloid with potential cyclin‐dependent kinases (CDKs) inhibitory activities) is reported. All the complexes were fully characterized by classical analytical methods, and three were characterized by X‐ray crystallography. Hydrolytic studies show that β‐carboline ligands play a vital role in their aqueous behaviour. These complexes are highly active in vitro, with the most active complex 6 displaying a 3‐ to 12‐fold higher anticancer activity than cisplatin against several cancer cell lines. Interestingly, the complexes are able to overcome cross‐resistance to cisplatin, and show much lower cytotoxicity against normal cells. Complexes 1 – 6 may directly target CDK1, because they can block cells in the G2M phase, down‐regulate the expression of CDK1 and cyclin B1, and inhibit CDK1/cyclin B in vitro. Further mechanism studies show that the complexes can effectively induce apoptosis through mitochondrial‐related pathways and intracellular reactive oxygen species (ROS) elevation.  相似文献   

18.
Two symmetric tetrapodal ligands L1–2 and one asymmetric tetrapodal ligand L3 based on 4,5‐diazafluoren have been synthesized and characterized. Ligands L1–2 formed by the condensation of pentaerythrityl tetratosylate with 4,5‐diazafluoren‐9‐oxime and 9‐(4‐hydroxy)phenylimino‐4,5‐diazafluorene, respectively. L3 was prepared by two steps, 9‐(4‐hydroxy)phenylimino‐4,5‐diazafluorene reacted with pentaerythrityl tetratosylate affording 1,1′,1"‐tris[(4,5‐diazafluoren‐9‐ylimino)phenoxymethyl]‐1"′‐(p‐tosyloxymethyl)‐methane, which reacted with 4,5‐diazafluoren‐9‐oxime affording the asymmetric ligand L3. Three tetranuclear RuII complexes [(bpy)8L1–3Ru4](PF6)8 (bpy = bipyridine) were obtained by the reaction of Ru(bpy)2Cl2 · 2H2O with ligands L1–3. Spectroscopic studies of these complexes exhibit metal‐to‐ligand charge transfer absorptions at 440–445 nm and emissions at 575–579 nm. The electrochemical behaviors of these complexes are consistent with one RuII‐based oxidation couple and three ligand‐centered reduction couples.  相似文献   

19.
We report the synthesis of a mixed‐valence ruthenium complex, bearing pyrene moieties on one side of the ligands as anchor groups. Composites consisting of mixed‐valence ruthenium complexes and SWNTs were prepared by noncovalent π–π interactions between the SWNT surface and the pyrene anchors of the Ru complex. In these composites, the long axis of the Ru complexes was aligned in parallel to the principal direction of the SWNT. The optimized conformation of these complexes on the SWNT surface was calculated by molecular mechanics. The composites were examined by UV/Vis absorption and FT‐IR spectroscopy, XPS, and SEM analysis. Furthermore, their electrochemical properties were evaluated. Cyclic voltammograms of the composites showed reversible oxidation waves at peak oxidation potentials (Epox) = 0.86 and 1.08 V versus Fc+/Fc, which were assigned to the RuII‐RuII/RuII‐RuIII and the RuII‐RuIII/RuIII‐RuIII oxidation events of the dinuclear ruthenium complex, respectively. Based on these observations, we concluded that the electrochemical properties and mixed‐valence state of the dinuclear ruthenium complexes were preserved upon attachment to the SWNT surface.  相似文献   

20.
《化学:亚洲杂志》2018,13(19):2923-2933
A family of novel imine‐N‐heterocyclic carbene ruthenium(II) complexes of the general formula [(η6p‐cymene)Ru(C^N)Cl]PF6 (where C^N is an imine‐N‐heterocyclic carbene chelating ligand with varying substituents) have been prepared and characterized. In this imine‐N‐heterocyclic carbene chelating ligand framework, there are three potential sites that can be modified, which distinguishes this class of ligand and provides a body of flexibilities and opportunities to tune the cytotoxicity of these ruthenium(II) complexes. The influence of substituent effects of three tunable domains on the anticancer activity and catalytic ability in converting coenzyme NADH to NAD+ is investigated. This family of complexes displays an exceedingly distinct anticancer activity against A549 cancer cells, despite their close structural similarity. Complex 9 shows the highest anticancer activity in this series against A549 cancer cells (IC50=14.36 μm ), with an approximately 1.5‐fold better activity than the clinical platinum drug cisplatin (IC50=21.30 μm ) in A549 cancer cells. Mechanistic studies reveal that complex 9 mediates cell death mainly through cell stress, including cell cycle arrest, inducing apoptosis, increasing intracellular reactive oxygen species (ROS) levels, and depolarization of the mitochondrial membrane potential (MMP). Furthermore, lysosomal damage is also detected by confocal microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号