首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three kinds of polyhedral α‐Fe2O3 nanoparticles enclosed by different facets including oblique parallel hexahedrons (op‐hexahedral NPs), cracked oblique parallel hexahedrons (cop‐hexahedral NPs), and octadecahedral nanoparticles (octadecahedral NPs), were successfully prepared by simply changing only one reaction parameter in the hydrothermal process. The structural and morphological of the products were systematically studied using various characterizations including X‐ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), revealing that the three kinds of α‐Fe2O3 nanoparticles were enclosed by {104}, {110}/{104}, and {102}/{012}/{104} crystal planes, respectively. The exposed facets and shape of the nanocrystals were found to be affected by the adding amount of ethylene glycol in the solvent. The gas‐sensing properties and mechanism of the α‐Fe2O3 samples were studied and analyzed, which indicated that the sensitivity of the three samples followed the order of octadecahedral NPs > cop‐hexahedral NPs > op‐hexahedral NPs due to the combined effects of specific surface area and oxygen defects in the nanocrystals.  相似文献   

2.
In the present investigation, a series of 4‐((3‐(trifluoromethyl)‐5,6‐dihydro‐[1,2,4]triazolo[4,3‐a]pyrazin‐7(8H)‐yl)methyl)benzenamine analogs 6a–o were synthesized and characterized by IR, NMR (1H and 13C), and mass spectra. All newly synthesized compounds 6a–o were prepared under conventional and microwave irradiation methods. These compounds obtained in higher yields and in shorter reaction times in the microwave irradiation method when compared with the conventional method. Synthesized compounds 6a–o were inspected for their in vitro antitubercular activity against Mycobacterium tuberculosis H37Ra using an established XTT reduction menadione assay. Among the screened compounds, 6i (IC50: 1.82 μg/mL), 6j (IC50: 1.02 μg/mL), and 6k (IC50: 1.59 μg/mL) showed excellent activity. Furthermore, compound 6i showed MIC90 value of 16.02 μg/mL. In summary, the results indicate the identification of some novel, selective, and specific inhibitors against M. tuberculosis that can be explored further for the potential antitubercular drug.  相似文献   

3.
Herein, the α‐Fe2O3@carboxyl‐functionalized yeast composite (α‐F@CFYC) was synthesized by direct oxidation of yeast with K2FeO4 and used as a novel adsorbent/heterogeneous Fenton catalyst for removal of methylene blue (MB). The obtained α‐F@CFYC was fully characterized by scanning electron microscopy, EDX, X‐ray diffraction analysis, Fourier‐transform infrared, thermogravimetry, and X‐ray photoelectron spectroscopy, respectively, and the corresponding results showed that α‐Fe2O3 nanoparticles were successfully obtained and deposited on yeast surface, as well as more functional groups were introduced/exposed on yeast surface. Furthermore, various influence parameters (eg, contact time, initial pH, and MB concentration) on the adsorption/catalysis ability of α‐F@CFYC for MB have been investigated in detail under ambient conditions. As a result, owing to the synergetic effect of the loaded α‐Fe2O3 and the introduced/exposed functional groups on yeast surface, the as‐obtained α‐F@CFYC exhibited high adsorption capacities and good catalysis degradation properties for MB.  相似文献   

4.
3‐Arylsydnones are reported to possess striking pharmaceutical potency. α‐Aminoketone, a biologically active structural unit, is built at the fourth (electrophilic) position of sydnone and further derivatized with secondary amine and tetrazoles. The α‐aminoketone derivatives of sydnones coupled with secondary amines 4a – n were docked on enoyl acyl carrier protein (ACP) reductase from Mycobacterium tuberculosis, which revealed that compounds 4b , 4f , and 4i showed efficient C score values with different binding modes and hydrogen bonding. Further, these compounds were screened for antimycobacterial activity; among them, compound 4f displayed sensitivity at 6.25 μg/mL compared with the standard drug (Streptomycin) against Mtuberculosis (H37RV strain). In addition to this, α‐aminoketone derivatives of sydnones coupled with tetrazoles 8a – h were evaluated for antifungal activity. In the antifungal activity, compound 8b has exhibited potent activity at 6.25 μg/mL against Candida albicans and compound 8g at 0.4 μg/mL against Aspergillus fumigatus. The antifungal activities are comparatively better than standard antifungal agent Fluconazole at these drug concentrations. Alongside characterization of the final compounds by Fourier transform infrared, mass, 1H NMR, and 13C NMR spectral analyses, compounds 8b and 8g were confirmed by X‐ray crystallographic studies.  相似文献   

5.
Stable water dispersion of Fe3O4 magnetic nanoparticles (NPs) were successfully synthesized by using 3‐glycidoxypropyltrimethoxysilane (GPTMS) and Mg‐phyllo (organo) silicate known as aminoclay (AC) containing pendant amino groups with the approximate composition (R8Si8Mg6O16(OH)4, R = CH2CH2CH2NH2). The Fe3O4‐GPTMS magnetic NPs with an epoxy functional group are suitable for forming a covalent bond with the amine group of aminoclay in an epoxy ring opening reaction. Appropriate Fe3O4‐GPTMS‐aminoclay (FG‐AC) magnetic composite are promising carriers for the targeting and delivery of platinum‐based anticancer drugs. Analysis of the cytotoxicity of the nanostructures on a K562 leukemia cell line using a colorimetery assay shows that both the FG‐AC and cis‐platin/FG‐AC magnetic composite were biocompatible. The nanostructures characterizations were investigated by Fourier transform infrared spectroscopy, X‐ray diffraction, transmission electron microscopy and energy dispersive analysis of X‐ray techniques. Magnetic measurement revealed that the saturated magnetization of the FG‐AC nanocomposite reached 7.6 emu/g and showed the characteristics of magnetism.  相似文献   

6.
The crystal structure of methyl α‐d ‐mannopyranosyl‐(1→3)‐2‐O‐acetyl‐β‐d ‐mannopyranoside monohydrate, C15H26O12·H2O, ( II ), has been determined and the structural parameters for its constituent α‐d ‐mannopyranosyl residue compared with those for methyl α‐d ‐mannopyranoside. Mono‐O‐acetylation appears to promote the crystallization of ( II ), inferred from the difficulty in crystallizing methyl α‐d ‐mannopyranosyl‐(1→3)‐β‐d ‐mannopyranoside despite repeated attempts. The conformational properties of the O‐acetyl side chain in ( II ) are similar to those observed in recent studies of peracetylated mannose‐containing oligosaccharides, having a preferred geometry in which the C2—H2 bond eclipses the C=O bond of the acetyl group. The C2—O2 bond in ( II ) elongates by ~0.02 Å upon O‐acetylation. The phi (?) and psi (ψ) torsion angles that dictate the conformation of the internal O‐glycosidic linkage in ( II ) are similar to those determined recently in aqueous solution by NMR spectroscopy for unacetylated ( II ) using the statistical program MA′AT, with a greater disparity found for ψ (Δ = ~16°) than for ? (Δ = ~6°).  相似文献   

7.
A series of 1,2,4‐triazole‐3‐thione derivatives ( 6a – 6t ) were synthesized and evaluated against influenza viruses (H1N1) neuraminidase (NA) in vitro. Eighteen compounds exhibited inhibitory potency with IC50 values ranging from 14.68 ± 0.49 to 39.85 ± 4.23 μg/mL. Among them, compounds 6e and 6h showed significant inhibitory activity with IC50 values of 14.97 ± 0.70 and 14.68 ± 0.49 μg/mL, respectively. Structure activity relationships were established. Molecular docking studies were performed to understand the binding interaction between active compounds and NA.  相似文献   

8.
The phytochemical investigation of the MeOH extract from fruits of Kotschya strigosa using repeated normal and reversed‐phase column chromatography and Sephadex LH‐20 chromatography led to the isolation and characterization of a new isoflavanol, named kotstrigoisoflavanol ( 1 ), together with three known compounds, diosmetin ( 2 ), β‐sitosterol ( 3 ), and the 3‐Oβ‐d‐glucopyranoside of β‐sitosterol ( 4 ). The antioxidant activity of crude extract, 1, and 2 was determined using the 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH˙) method. The crude extract (IC50 61.7 ± 0.2 μg/ml) and 2 (IC50 70.2 ± 0.1 μg/ml) showed moderate antioxidant activities, while 1 was weakly active (IC50 153.1 ± 0.1 μg/ml), as compared with the standard reference l ‐ascorbic acid (IC50 21.9 ± 0.0 μg/ml).  相似文献   

9.
Fe3O4@SiO2 nanoparticles was functionalized with a binuclear Schiff base Cu(II)‐complex (Fe3O4@SiO2/Schiff base‐Cu(II) NPs) and used as an effective magnetic hetereogeneous nanocatalyst for the N‐arylation of α‐amino acids and nitrogen‐containig heterocycles. The catalyst, Fe3O4@SiO2/Schiff base‐Cu(II) NPs, was characterized by Fourier transform infrared (FTIR) and ultraviolet‐visible (UV‐vis) analyses step by step. Size, morphology, and size distribution of the nanocatalyst were studied by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and dynamic light scatterings (DLS) analyses, respectively. The structure of Fe3O4 nanoparticles was checked by X‐ray diffraction (XRD) technique. Furthermore, the magnetic properties of the nanocatalyst were investigated by vibrating sample magnetometer (VSM) analysis. Loading content as well as leaching amounts of copper supported by the catalyst was measured by inductive coupled plasma (ICP) analysis. Also, thermal studies of the nanocatalyst was studied by thermal gravimetric analysis (TGA) instrument. X‐ray photoelectron spectroscopy (XPS) analysis of the catalyst revealed that the copper sites are in +2 oxidation state. The Fe3O4@SiO2/Schiff base‐Cu(II) complex was found to be an effective catalyst for C–N cross‐coupling reactions, which high to excellent yields were achieved for α‐amino acids as well as N‐hetereocyclic compounds. Easy recoverability of the catalyst by an external magnet, reusability up to eight runs without significant loss of activity, and its well stability during the reaction are among the other highlights of this catalyst.  相似文献   

10.
A novel chiral magnetic nanocatalyst was prepared by the surface modification of Fe3O4 magnetic nanoparticles (MNPs) with a chloropropylsilane and further by arginine to form Fe3O4@propylsilan‐arginine (Fe3O4@PS‐Arg). After the structural confirmation of Fe3O4@PS‐Arg synthesized MNPs by Fourier transform‐infrared, X‐ray diffraction, field emission‐scanning electron microscopy, transmission electron microscopy, vibrating‐sample magnetometry and thermogravimetric analyses, their catalytic activity was evaluated for one‐pot enantioselective synthesis of 3‐amino‐1‐aryl‐1H‐benzo[f]chromene‐2‐carbonitrile derivatives. The results showed that in the presence of 0.07 g Fe3O4@PS‐Arg nanocatalyst and ethanol as solvent, the best reaction yield (96%) was obtained in the least time (5 min). Easy operation, reusability and stability, short reaction time, high reaction yields and good enantioselectivity are the major advantages of the newly synthesized nanocatalyst. Also, this study provides a novel strategy for further research and investigation on the synthesis of new reusable enantioselective catalysts and chiral compounds.  相似文献   

11.
In this work, functionalized chitosan end‐capped Ag nanoparticles (NPs) and composited with Fe3O4‐NPs was prepared as pH‐responsive controlled release carrier for gastric‐specific drug delivery. The structure of prepared material was characterized by FE‐SEM, XRD, EDS and FT‐IR analysis. The loading behavior of the progesterone onto this novel material was studied in aqueous medium at 25°C and their release was followed spectrophotometrically at 37°C in seven different buffer solutions (pH 1.2, 2.2, 3.2, 4.2, 5.2, 6.2 and 7.2) to simulate intestine and gastric media which experimental results reveal more release rate in pH 1.2 (gastric medium) with respect to other buffers. This observation is attributed to dependency of the CS‐IMBDO‐Ag‐Fe3O4‐NPs and progesterone structure with buffer pH that candidate this new material as prospective pH‐sensitive carrier for gastric‐targeted drug delivery. On the other hand, the antibacterial properties of this material against gram‐negative bacterium pseudomonas aeruginosa (PAO‐1) in agar plates was studied and accordingly based on broth micro dilution the minimum bactericidal concentration (MBC) and minimum inhibitory concentration (MIC) with respect to standard CLSI in different concentrations of CS‐IMBDO‐Ag‐Fe3O4‐NPs was calculated. The results reveal that MIC and MBC values are 50 and 1250 μg/mL, respectively. In addition, extracts of Portulaca oleracea leaves was prepared and its antibacterial activity in single and binary system with CS‐IMBDO‐Ag‐Fe3O4‐NPs as synergies effect against PAO‐1 was tested and results shown that these materials have significant synergistic effect for each other.  相似文献   

12.
Two mononuclear ruthenium complexes ( 1 and 2 ) with aroyl/acylthiourea as an ancillary ligand of type, [(η6p‐cymene)RuCl(L‐N,S)], where [ L1  = 2,4‐dichloro‐N‐(o‐tolylcarbamothioyl)benzamide] and L2  = N‐(phenylcarbamothioyl)cyclohexanecarboxamide] were synthesized and well characterized. The single crystal X‐ray diffraction studies revealed the coordination mode and the geometry of the complexes. The two complexes adopted general piano‐stool (three‐legged) geometry with a novel coordination mode of aroyl/acylthiourea through amide N (anionic) and thiocarbonyl S (neutral). This type of monobasic bidentate coordination of the aroyl/acylthiourea ligand was witnessed the first time around the metal ion. The coordination of the complexes was well explained through geometric parameters and frontier molecular orbital parameter values computed at the B3LYP/SDD level. The synthesized complexes were also screened for their antibacterial, antifungal, antioxidant and in vitro antiproliferative activities. Complexes exhibited good antimicrobial agents against various pathogens. The antioxidant activity of the complex 2 has shown most potent activity with IC50 value of 48.55 ± 1.7 μM compared to the reference drug. In addition, the in vitro antiproliferative activity of the complex 2 showed excellent activity against HepG‐2 cell line with the IC50 value of 24.30 ± 1.20 μM which is close to Doxorubicin standard drug.  相似文献   

13.
The structure of FeOx species supported on γ‐Al2O3 was investigated by using Fe K‐edge X‐ray absorption fine structure (XAFS) and X‐ray diffraction (XRD) measurements. The samples were prepared through the impregnation of iron nitrate on Al2O3 and co‐gelation of aluminum and iron sulfates. The dependence of the XRD patterns on Fe loading revealed the formation of α‐Fe2O3 particles at an Fe loading of above 10 wt %, whereas the formation of iron‐oxide crystals was not observed at Fe loadings of less than 9.0 wt %. The Fe K‐edge XAFS was characterized by a clear pre‐edge peak, which indicated that the Fe?O coordination structure deviates from central symmetry and that the degree of Fe?O?Fe bond formation is significantly lower than that in bulk samples at low Fe loading (<9.0 wt %). Fe K‐edge extended XAFS oscillations of the samples with low Fe loadings were explained by assuming an isolated iron‐oxide monomer on the γ‐Al2O3 surface.  相似文献   

14.
In the present report, Nickel oxide nanoparticles (NiONPs) were synthesized using Rhamnus virgata (Roxb.) (Family: Rhamnaceae) as a potential stabilizing, reducing and chelating agent. The formation, morphology, structure and other physicochemical properties of resulting NiONPs were characterized by Ultra violet spectroscopy, X‐ray diffraction (XRD), Fourier Transform Infrared analysis (FTIR), Scanning electron microscopy (SEM), Energy‐dispersive‐spectroscopy (EDS), Transmission electron microscopy (TEM), Raman spectroscopy and dynamic light scattering (DLS). Detailed in vitro biological activities revealed significant therapeutic potential for NiONPs. The antimicrobial efficacy of biogenic NiONPs was demonstrated against five different gram positive and gram negative bacterial strains. Klebsiella pneumoniae and Pseudomonas aeruginosa (MIC: 125 μg/mL) were found to be the least susceptible and Bacillus subtilis (MIC: 31.25 μg/mL) was found to be the most susceptible strain to NiONPs. Biogenic NiONPs were reported to be highly potent against HepG2 cells (IC50: 29.68 μg/ml). Moderate antileishmanial activity against Leishmania tropica (KMH23) promastigotes (IC50: 10.62 μg/ml) and amastigotes (IC50: 27.58 μg/ml) cultures are reported. The cytotoxic activity was studied using brine shrimps and their IC50 value was recorded as 43.73 μg/ml. For toxicological assessment, NiONPs were found compatible towards human RBCs (IC50: > 200 μg/ml) and macrophages (IC50: > 200 μg/ml), deeming particles safe for various applications in nanomedicines. Moderate antioxidant activities: total antioxidant capacity (TAC) (51.43%), 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH) activity (70.36%) and total reducing power (TRP) (45%) are reported for NiONPs. In addition, protein kinase and alpha amylase inhibition assays were also performed. Our results concluded that Rhamnus virgata synthesized NiONPs could find important biomedical applications with low cytotoxicity to normal cells.  相似文献   

15.
In an attempt to achieve promising cytotoxic agents, a series of new (Z)‐3‐benzyl‐5‐((1‐phenyl‐3‐(3‐((1‐substituted phenyl‐1H‐1,2,3‐triazol‐4‐yl)methoxy)phenyl)‐1H‐pyrazol‐4‐yl)methylene)thiazolidine‐2,4‐diones 10 a‐n were designed, synthesized, and characterized by 1H NMR, 13C NMR, IR, and ESI‐MS techniques. These compounds synthesized from appropriate reaction procedures with better yields. All the novel synthesized compounds 10a‐n were evaluated for their cytotoxic activity against the MCF‐7 cell line (Human breast cancer cell line) at different concentrations of 0.625, 1.25, 2.5, 5, and 10 μM, respectively. The cytotoxic evaluation assay is presented in terms of IC50 values and percentage cell viability reduction compared against standard drug cisplatin. Among all novel synthesized compounds 10a‐n , some of the representative analogues particularly 10g and 10e exhibit remarkable cytotoxic activity with IC50 values 0.454 and 0.586 μM, comparable to that of the standard drug cisplatin, and some analogues 10d , 10f , 10k, and 10m also have shown significant activity.  相似文献   

16.
We present a novel strategy for the scalable fabrication of γ‐Fe2O3@3DPCF, a three‐dimensional porous carbon framework (PCF) anchored ultra‐uniform and ultra‐stable γ‐Fe2O3 nanocatalyst. The γ‐Fe2O3@3DPCF nanocomposites were facilely prepared with the following route: condensation of iron(III) acetylacetonate with acetylacetonate at room temperature to form the polymer precursor (PPr), which was carbonized subsequently at 800 °C. The homogeneous aldol condensation offered an ultra‐uniform distribution of iron, so that the γ‐Fe2O3 nanoparticles (NPs) were uniformly distributed in the 3D carbon architecture with the average size of approximate 20 nm. The Fe2O3 NPs were capped with carbon, so that the iron oxide maintained its γ‐phase instead of the more stable α‐phase. The nanocomposite was an excellent catalyst for the reduction of nitroarene; it gave >99 % conversion and 100 % selectivity for the reduction of nitroarenes to the corresponding anilines at 100 °C. The fabrication of the γ‐Fe2O3@3DPCF nanocatalyst represents a green and scalable method for the synthesis of novel carbon‐based metal oxide nanostructures.  相似文献   

17.
Three‐dimensional flower‐like α‐Fe2O3 nanostructures have been successfully synthesized by a simple surfactant‐free environmental friendly solvolthermal process. The as‐prepared products were investigated by X‐ray powder diffraction, transmission electron microscopy, and field emission scanning electron microscopy. By adjusting the synthetic parameters, the shape of the α‐Fe2O3 nanostructures can be controlled. The three‐dimensional flower‐like α‐Fe2O3 nanostructures were found to be highly active as catalysts for phenol alkylation. The effects of various parameters, such as reaction temperature, reaction time and the amount of catalyst, were studied. The catalyst was stable and could be reused three times in normal atmosphere without suffering appreciable loss in catalytic activity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Novel sulfonamide containing diaryl pyrazoles were synthesized and were subsequently tested for their in vitro cyclooxygenase inhibitory assay. Compounds that showed promising in vitro COX‐2 IC50 values and selectivity indices were then evaluated for their in vivo anti‐inflammatory inhibition assay using standard carrageenan‐induced rat paw edema method. Two promising inhibitors were evaluated for ulcerogenic liability. X‐ray crystal structure of COX‐2 was taken from PDB entry COX‐2 (3LN1) having a resolution of 2.80 Å (Angstroms). Structural preparations for docking studies were accomplished using protein preparation wizard in Maestro 9.0. Compound 10b displayed reasonable COX‐2 inhibition (COX‐2 IC50 = 0.52 μM) and COX‐2 selectivity index (SI = 10.73) when compared with celecoxib (COX‐2 IC50 = 0.78 μM) and (SI = 9.51). In vivo anti‐inflammatory studies demonstrated 64.28% inhibition for 10b in comparison with the 57.14% for that of celecoxib itself. The results of ulcerogenic liability were also found comparable with standard celecoxib. Molecular docking studies revealed that all the designed molecules showed good interactions with receptor active site with glide scores in the range −13.130 to −10.624.  相似文献   

19.
3‐methyl‐1‐sulfonic acid imidazolium tetrachloroferrate {[Msim]FeCl4} was prepared and fully characterized by fourier transform infrared spectroscopy (FT‐IR), X‐ray diffraction (XRD), thermal gravimetric analysis (TGA), differential thermal gravimetric (DTG), field emission scanning electron microscopy (FESEM), energy dispersive X‐ray analysis (EDX) and vibrating sample magnetometer (VSM) and used, as an efficient catalyst, for the tandem reaction of β‐naphthol with aromatic aldehydes and benzamide at 110 °C under solvent‐free conditions to give 1‐amidoalkyl‐2‐naphthols in high yields and very short reaction times.  相似文献   

20.
The X‐ray analyses of 2,3,4,6‐tetra‐O‐acetyl‐α‐d ‐glucopyranosyl fluoride, C14H19FO9, (I), and the corresponding maltose derivative 2,3,4,6‐tetra‐O‐acetyl‐α‐d ‐glucopyranosyl‐(1→4)‐2,3,6‐tri‐O‐acetyl‐α‐d ‐glucopyranosyl fluoride, C26H35FO17, (II), are reported. These add to the series of published α‐glycosyl halide structures; those of the peracetylated α‐glucosyl chloride [James & Hall (1969). Acta Cryst. A 25 , S196] and bromide [Takai, Watanabe, Hayashi & Watanabe (1976). Bull. Fac. Eng. Hokkaido Univ. 79 , 101–109] have been reported already. In our structures, which have been determined at 140 K, the glycopyranosyl ring appears in a regular 4C1 chair conformation with all the substituents, except for the anomeric fluoride (which adopts an axial orientation), in equatorial positions. The observed bond lengths are consistent with a strong anomeric effect, viz. the C1—O5 (carbohydrate numbering) bond lengths are 1.381 (2) and 1.381 (3) Å in (I) and (II), respectively, both significantly shorter than the C5—O5 bond lengths, viz. 1.448 (2) Å in (I) and 1.444 (3) Å in (II).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号