共查询到20条相似文献,搜索用时 31 毫秒
1.
Huile Jin Xin Feng Jun Li Matthew Li Yuanzhi Xia Yifei Yuan Chao Yang Bin Dai Zhiqun Lin Jichang Wang Jun Lu Shun Wang 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2019,131(8):2419-2423
The design of carbon‐based materials with a high mass density and large porosity has always been a challenging goal, since they fulfill the demands of next‐generation supercapacitors and other electrochemical devices. We report a new class of high‐density heteroatom‐doped porous carbon that can be used as an aqueous‐based supercapacitor material. The material was synthesized by an in situ dehalogenation reaction between a halogenated conjugated diene and nitrogen‐containing nucleophiles. Under the given conditions, pyridinium salts can only continue to perform the dehalogenation if there is residue water remaining from the starting materials. The obtained carbon materials are highly doped by various heteroatoms, leading to high densities, abundant multimodal pores, and an excellent volumetric capacitive performance. Porous carbon tri‐doped with nitrogen, phosphorous, and oxygen exhibits a high packing density (2.13 g cm?3) and an exceptional volumetric energy density (36.8 Wh L?1) in alkaline electrolytes, making it competitive to even some Ni‐MH cells. 相似文献
2.
Jian Gao Yun Wang Haihua Wu Xi Liu Leilei Wang Qiaolin Yu Aowen Li Hong Wang Chuqiao Song Zirui Gao Mi Peng Mengtao Zhang Na Ma Jiaou Wang Wu Zhou Guoxiong Wang Zhen Yin Ding Ma 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2019,131(42):15233-15241
The development of highly efficient metal‐free carbon electrocatalysts for the oxygen reduction reaction (ORR) is one very promising strategy for the exploitation and commercialization of renewable and clean energy, but this still remains a significant challenge. Herein, we demonstrate a facile approach to prepare three‐dimensional (3D) N‐doped carbon with a sp3/sp2 carbon interface derived from ionic liquids via a simple pyrolysis process. The tunable hybrid sp3 and sp2 carbon composition and pore structures stem from the transformation of ionic liquids to polymerized organics and introduction of a Co metal salt. Through tuning both composition and pores, the 3D N‐doped nanocarbon with a high sp3/sp2 carbon ratio on the surface exhibits a superior electrocatalytic performance for the ORR compared to that of the commercial Pt/C in Zn–air batteries. Density functional theory calculations suggest that the improved ORR performance can be ascribed to the existence of N dopants at the sp3/sp2 carbon interface, which can lower the theoretical overpotential of the ORR. 相似文献
3.
4.
5.
6.
7.
《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2017,129(27):7955-7960
Herein we introduce a straightforward, low cost, scalable, and technologically relevant method to manufacture an all‐carbon, electroactive, nitrogen‐doped nanoporous‐carbon/carbon‐nanotube composite membrane, dubbed “HNCM/CNT”. The membrane is demonstrated to function as a binder‐free, high‐performance gas diffusion electrode for the electrocatalytic reduction of CO2 to formate. The Faradaic efficiency (FE) for the production of formate is 81 %. Furthermore, the robust structural and electrochemical properties of the membrane endow it with excellent long‐term stability. 相似文献
8.
Qian Sun Xin Fang Wei Weng Jue Deng Peining Chen Jing Ren Guozhen Guan Min Wang Huisheng Peng 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2015,127(36):10685-10690
An aligned and laminated sulfur‐absorbed mesoporous carbon/carbon nanotube (CNT) hybrid cathode has been developed for lithium–sulfur batteries with high performance. The mesoporous carbon acts as sulfur host and suppresses the diffusion of polysulfide, while the CNT network anchors the sulfur‐absorbed mesoporous carbon particles, providing pathways for rapid electron transport, alleviating polysulfide migration and enabling a high flexibility. The resulting lithium–sulfur battery delivers a high capacity of 1226 mAh g−1 and achieves a capacity retention of 75 % after 100 cycles at 0.1 C. Moreover, a high capacity of nearly 900 mAh g−1 is obtained for 20 mg cm−2, which is the highest sulfur load to the best of our knowledge. More importantly, the aligned and laminated hybrid cathode endows the battery with high flexibility and its electrochemical performances are well maintained under bending and after being folded for 500 times. 相似文献
9.
10.
11.
12.
The synthesis of hydrocarbons from hydrogenation of carbon dioxide has been studied on a series of coprecipitated iron-manganese catalysts. Kinetic measurements, X-ray diffraction, Mössbauer spectroscopy, and temperature-programmed reaction of adsorbed species were used for activity tests and catalyst characterizations. The results showed that the yields of low-carbon olefins decrease, whereas the amount of methane increases with increasing manganese content in catalysts. The conversion to hydrocarbons is suppressed by the reverse water-gas shift (RWGS) reaction equilibrium. Mössbauer spectra and XRD patterns of catalysts after reaction indicate that catalysts are severely oxidized; it is speculated that the olefin producing surface structure in CO hydrogenation may be destroyed by this oxidation. A pulse-reactor study of the Boudouard reaction showed that manganese has the effect of suppressing CO dissociation and thus decreasing carbon content on catalysts. For CO2 hydrogenation, the affinity to carbon on catalysts is important; therefore manganese is not a good promoter. Among all catalysts tested, pure iron has the best selectivity to olefinic and long-chain hydrocarbons. 相似文献
13.
En Zhang Natalia Fulik Guang‐Ping Hao Han‐Yue Zhang Katsumi Kaneko Lars Borchardt Eike Brunner Stefan Kaskel 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2019,131(37):13194-13199
A new asymmetric capacitor concept is proposed providing high energy storage capacity for only one charging direction. Size‐selective microporous carbons (w<0.9 nm) with narrow pore size distribution are demonstrated to exclusively electrosorb small anions (BF4?) but size‐exclude larger cations (TBA+ or TPA+), while the counter electrode, an ordered mesoporous carbon (w>2 nm), gives access to both ions. This architecture exclusively charges in one direction with high rectification ratios (RR=12), representing a novel capacitive analogue of semiconductor‐based diodes (“CAPode”). By precise pore size control of microporous carbons (0.6 nm, 0.8 nm and 1.0 nm) combined with an ordered mesoporous counter electrode (CMK‐3, 4.8 nm) electrolyte cation sieving and unidirectional charging is demonstrated by analyzing the device charge‐discharge response and monitoring individual electrodes of the device via in situ NMR spectroscopy. 相似文献
14.
15.
Hengyang Cheng Jinku Meng Guan Wu Su Chen 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2019,131(48):17626-17634
Advanced methods, allowing the controllable synthesis of ordered structural nanomaterials with favourable charges transfer and storage, are highly important to achieve ideal supercapacitors with high energy density. Herein, we report a microliter droplet‐based method to synthesize hierarchical‐structured metal–organic framework/graphene/carbon nanotubes hybrids. The confined ultra‐small‐volume reaction, give well‐defined hybrids with a large specific‐surface‐area (1206 m2 g?1), abundant ionic‐channels (narrow pore of 0.86 nm), and nitrogen active‐sites (10.63 %), resulting in high pore‐size utilization (97.9 %) and redox‐activity (32.3 %). We also propose a scalable microfluidic‐blow‐spinning method to consecutively generate nanofibre‐based flexible supercapacitor electrodes with striking flexibility and mechanical strength. The supercapacitors display large volumetric energy density (147.5 mWh cm?3), high specific capacitance (472 F cm?3) and stably deformable energy‐supply. 相似文献
16.
17.
18.
Xiaoxiao Yu Zhenzhen Yang Bing Qiu Shien Guo Peng Yang Bo Yu Hongye Zhang Yanfei Zhao Xinzheng Yang Buxing Han Zhimin Liu 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2019,131(2):642-646
Visible‐light‐driven photoreduction of CO2 to energy‐rich chemicals in the presence of H2O without any sacrifice reagent is of significance, but challenging. Herein, Eosin Y‐functionalized porous polymers (PEosinY‐N, N=1–3), with high surface areas up to 610 m2 g?1, are reported. They exhibit high activity for the photocatalytic reduction of CO2 to CO in the presence of gaseous H2O, without any photosensitizer or sacrifice reagent, and under visible‐light irradiation. Especially, PEosinY‐1 derived from coupling of Eosin Y with 1,4‐diethynylbenzene shows the best performance for the CO2 photoreduction, affording CO as the sole carbonaceous product with a production rate of 33 μmol g?1 h?1 and a selectivity of 92 %. This work provides new insight for designing and fabricating photocatalytically active polymers with high efficiency for solar‐energy conversion. 相似文献
19.