首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The synthesis of a protected dephosphofostriecin, and thereby a formal synthesis of fostriecin, has been accomplished. The synthetic challenges were the construction of four stereogenic centers and the conformationally labile ciscistrans‐triene moiety. Previous total syntheses have employed at least two asymmetric reactions that required the use of an external chiral auxiliary. Although remote stereoinduction in a 1,4‐relationship is considered difficult, we have developed a notable 1,4‐asymmetric induction that utilizes an alkyne–cobalt complex for the control of C5 stereochemistry by the C8 stereogenic center. The stereochemistry at C11 was established by 1,3‐asymmetric induction with a higher‐order alkynyl‐zinc reagent. Thus, only one asymmetric reaction requiring an external chiral auxiliary was employed in this route. The labile ciscistrans‐triene unit was constructed at a late stage of the synthesis by diastereoselective coupling of a dienyne and an aldehyde unit, followed by reduction.  相似文献   

2.
A facile and highly diastereoselective method for the construction of 2-quaternary 1,3-amino alcohols and 1,3-diols has been developed on the basis of the AlEt3/THF-promoted tandem rearrangement/reductive reaction of α-hydroxy (amino) aziridines (epoxides). The progressive achievement in this article included that both 2-epimers of the units could be constructed from the initially same substrate. Also a stereochemistry assignment we reported previously was corrected.  相似文献   

3.
The first total synthesis of (+)‐neomarinone has been achieved by following a concise and convergent route using methyl (R)‐lactate and (R)‐3‐methylcyclohexanone as chiral building blocks. Key steps of the synthesis are the stereocontrolled formation of the two quaternary stereocenters by diastereoselective 1,4‐conjugate addition and enolate alkylation reactions, and the construction of the furanonaphthoquinone skeleton by regioselective Diels–Alder reaction between a 1,3‐bis(trimethylsilyloxy)‐1,3‐diene and a bromoquinone. The synthesis proves the relative and absolute stereochemistry of natural neomarinone.  相似文献   

4.
An efficient, stereocontrolled total synthesis of the complex indole‐diterpene alkaloid (?)‐21‐isopentenylpaxilline ( 1 ) has been achieved. Key elements of the synthesis include the stereocontrolled construction of the advanced eastern hemisphere (?)‐ 68 , involving a highly efficient union of the eastern and western fragments (?)‐ 68 and 5 exploiting our 2‐substituted indole synthesis, application of the Negishi π cycloalkylation tactic as a new, potentially general protocol for the construction of ring C, and the fragmentation of a β,γ‐epoxy ketone to introduce the tertiary OH group at C(13) in the indole diterpene skeleton.  相似文献   

5.
The structural features Kopsia alkaloids, in particular multiple all‐carbon quaternary stereocenters in a caged and strained polycyclic skeleton, poses particular challenges for enantioselective total synthesis. Herein, we reported the first total synthesis of (+)‐flavisiamine F. The synthetic approach involved a room‐temperature Overman rearrangement for introducing the chiral amine at C21, a TMS‐promoted ketal Claisen rearrangement for constructing the all‐carbon quaternary stereocenter at C20, and a late‐stage visible‐light‐induced photochemical cyclization for establishing the all‐carbon quaternary stereocenter at C7.  相似文献   

6.
The diastereoselective synthesis of novel series of dispiropyrrolidines has been achieved by a one‐pot three‐component [3 + 2] cycloaddition reaction of (E)‐2‐arylideneindanones, glycine ethyl ester, and the cyclic diketones 1H‐indole‐2,3‐dione (isatin) or acenaphthenequinone. Moreover, we disclose an unprecedented epimerization of spiroadducts leading to a new family of dispiropyrrolidines with an unusual relative stereochemistry.  相似文献   

7.
The first total synthesis of the hexacyclic indole alkaloid (±)‐corymine is described. Starting from the readily available N‐protected tryptamine, the title compound was achieved in 21 steps in 3.4 % overall yield. Key steps of the synthesis include: a) the addition of a malonate to a 3‐bromooxindole to afford 3,3‐disubstituted oxindole, b) the formation of a 12‐membered cyclic enol ether by intramolecular O‐propargylation, immediately followed by propargyl Claisen rearrangement to provide the α‐allenyl ketone stereospecifically, c) DMDO oxidation to install a hydroxy group in a highly stereoselective manner, and d) the SmI2‐mediated reductive C−O bond cleavage to remove the α‐keto carboxyl group.  相似文献   

8.
A simple, efficient synthesis is reported for (?)‐cis‐α‐ and (?)‐cis‐γ‐irone, two precious constituents of iris oils, in ≥99 % diastereomeric and enantioselective ratios. The two routes diverge from a common intermediate prepared from (?)‐epoxygeraniol. Of general interest in this approach is the installation of the enone moiety of irones through a NHC?AuI‐catalyzed Meyer–Schuster‐like rearrangement of a propargylic benzoate and the use of Wilkinson’s catalyst for the stereoselective hydrogenation of a prostereogenic exocyclic double bond to secure the critical cis stereochemistry of the alkyl groups at C2 and C6 of the irones. The stereochemical aspects of this reaction are rationally supported by DFT calculation of the conformers of the substrates undergoing the hydrogenation and by a modeling study of the geometry of the rhodium η2 complexes involved in the diastereodifferentiation of the double bond faces. Thus, computational investigation of the η2 intermediates formed in the catalytic cycle of prostereogenic alkene hydrogenation by using Wilkinson’s catalyst could be highly predictive of the stereochemistry of the products.  相似文献   

9.
A diastereoselective synthesis of cis‐5‐oxodecahydroquinolines is described in which three stereocenters are generated in a one‐pot reaction. The reaction involves a lithium hydroxide‐promoted Robinson annulation/intramolecular aza‐Michael domino process from an achiral acyclic tosylamine‐tethered β‐keto ester. The development and scope of this reaction was facilitated through the use of DFT‐based mechanistic studies, which enabled the observed diastereodivergent course of the azacyclization to be rationalized. The varying stereochemistry and stability of the resulting decahydroquinolines was found to depend on whether a β‐keto ester or ketone were embedded in the substrates undergoing aminocyclization. This synthetic approach gave access not only to both diastereomeric cis‐decahydroquinolines from the same precursor, but also to the corresponding trans isomers, through an epimerization processes of the corresponding N‐unsubstituted cis‐5‐oxodecahydroquinolines. The described methodology provides advanced building‐blocks with the three relative stereochemistries required for the total synthesis of phlegmarine alkaloids.  相似文献   

10.
The title compound, C12H20O3, (IV), the ethyl ester of which is an intermediate in the synthesis of a compound reported to be highly estrogenic, has been prepared. After the initial steps reported for the synthesis of this ester intermediate were followed, it was converted into the crystalline acid, (IV), for X‐ray analysis. It was verified that (IV) was racemic when prepared. X‐ray analysis showed that anti‐hydrogenation of the double bond had occurred in the synthesis, making the orientation of the carboxyl group cis to the 2‐methyl group and trans to the 3‐ethyl group. NMR spectroscopy showed that the stereochemistry of (IV) was identical with that of its ester precursor. While the earlier report did not note the stereochemistry of this ester, it pointed out that the estrogenic product derived from it possessed the opposite carboxyl‐2‐methyl orientation, i.e.trans, although no X‐ray analysis was performed. In the light of these results and the importance of correlating biological activity with compound structure, the unequivocal characterization of the highly estrogenic compound is warranted.  相似文献   

11.
An efficient methodology for highly diastereoselective synthesis of poly‐substituted 4,5‐dihydropyrrole derivatives from readily available common reactants in water has been developed. During domino processes, the formation of pyrrole skeleton and its C2‐hydroxylation and C3‐arylamination were readily achieved via metal‐free [3+2] heterocyclization in a one‐pot operation.  相似文献   

12.
The diastereoselective cyanation of α‐keto amides using trimethylsilyl cyanide in the presence of a Lewis acid is described. The corresponding O‐acetylated cyanohydrins are obtained in good to high levels of stereoselectivities. The predominance of products with the S absolute configuration at the newly generated stereogenic center was deduced from single crystal X‐ray analysis. 13C NMR data suggest that a preferential s‐cis conformation was formed by the chelation of a Lewis acid to the dicarbonyl oxygen atoms.  相似文献   

13.
We describe herein formal syntheses of the indole alkaloids cis‐trikentrin A and herbindole B from a common meso‐hydroquinone intermediate prepared by a ruthenium‐catalyzed [2+2+1+1] cycloaddition that has not been used previously in natural product synthesis. Key steps include a sterically demanding Buchwald–Hartwig amination as well as a unique C(sp3)?H amination/indole formation. Studies toward a selective desymmetrization of the meso‐hydroquinone are also reported.  相似文献   

14.
Debromination of N‐benzyl 4‐ or 5‐substituted α‐bromo‐α‐p‐toluenesulfonylglutarimides is achieved with 1,8‐diazabicyclo[5.4.0]undec‐7‐ene (DBU) to give the N‐benzyl 4‐ or 5‐substituted α‐p‐toluenesulfonylglutarimides. The DBU/THF system is applied to a new methodology for the synthesis of bicyclic glutarimide skeleton in moderate yields.  相似文献   

15.
Structurally complex diazo‐containing scaffolds are formed by conjugate addition to vinyl diazonium salts. The electrophile, a little studied α‐diazonium‐α,β‐unsaturated carbonyl compound, is formed at low temperature under mild conditions by treating β‐hydroxy‐α‐diazo carbonyls with Sc(OTf)3. Conjugate addition occurs selectively at the 3‐position of indole to give α‐diazo‐β‐indole carbonyls, and enoxy silanes react to give 2‐diazo‐1,4‐dicarbonyl products. These reactions result in the formation of tertiary and quaternary centers, and give products that would be otherwise difficult to form. Importantly, the diazo functional group is retained within the molecule for future manipulation. Treating an α‐diazo ester indole addition product with Rh2(OAc)4 caused a rearrangement to occur to give a 2‐(1H‐indol‐3‐yl)‐2‐enoate. In the case of diazo ketone compounds, this shift occurred spontaneously on prolonged exposure to the Lewis acidic reaction conditions.  相似文献   

16.
A novel metal‐free synthesis of 3,3‐disubstituted benzofuran‐2‐(3H)‐ones through reacting α‐aryl‐α‐diazoacetates with triarylboranes is presented. Initially, triarylboranes were successfully investigated in α‐arylations of α‐diazoacetates, however in the presence of a heteroatom in the ortho position, the boron enolate intermediate undergoes an intramolecular rearrangement to form a quaternary center. The intermediate cyclizes to afford valuable 3,3‐disubstituted benzofuranones in good yields.  相似文献   

17.
An enantioselective synthesis of α‐aminoketone derivatives were readily available through a tandem insertion–[1,3] O‐to‐C rearrangement reaction. The rhodium salt and chiral N,N′‐dioxide‐indium(III) complex make up relay catalysis, which enables the O?H insertion of benzylic alcohols to N‐sulfonyl‐1,2,3‐triazoles, and asymmetric [1,3]‐rearrangement of amino enol ether intermediates, subsequently. Preliminary mechanistic studies suggested that the [1,3] O‐to‐C rearrangement step proceeded through an ion pair pathway.  相似文献   

18.
Addition reactions of thioamide dianions that were derived from N‐arylmethyl thioamides to imines and aziridines were carried out. The reactions of imines gave the addition products of N‐thioacyl‐1,2‐diamines in a highly diastereoselective manner in good‐to‐excellent yields. The diastereomeric purity of these N‐thioacyl‐1,2‐diamines could be enriched by simple recrystallization. The reduction of N‐thioacyl‐1,2‐diamines with LiAlH4 gave their corresponding 1,2‐diamines in moderate‐to‐good yields with retention of their stereochemistry. The oxidative‐desulfurization/cyclization of an N‐thioacyl‐1,2‐diamine in CuCl2/O2 and I2/pyridine systems gave the cyclized product in moderate yield and the trans isomer was obtained as the sole product. On the other hand, a similar cyclization reaction with antiformin (aq. NaClO) as an oxidant gave the cis isomer as the major product. The reactions of N‐tosylaziridines gave the addition products of N‐thioacyl‐1,3‐diamines with low diastereoselectivity but high regioselectivity and in good‐to‐excellent yields. The use of AlMe3 as an additive improved the efficiency and regioselectivity of the reaction. The stereochemistry of the obtained products was determined by X‐ray diffraction.  相似文献   

19.
Great interest in natural furanoside‐containing compounds has challenged the development of preparative methods for their synthesis. Herein a novel reaction in carbohydrate chemistry, namely a pyranoside‐into‐furanoside (PIF) rearrangement permitting the transformation of selectively O‐substituted pyranosides into the corresponding furanosides is reported. The discovered process includes acid‐promoted sulfation accompanied by rearrangement of the pyranoside ring into a furanoside ring followed by solvolytic O‐desulfation. This process, which has no analogy in organic chemistry, was shown to be a very useful tool for the synthesis of furanoside‐containing complex oligosaccharides, which was demonstrated by synthesizing disaccharide derivatives α‐D ‐Galp‐(1→3)‐β‐D ‐ Galf ‐OPr, 3‐O‐s ‐lactyl‐β‐D ‐ Galf ‐(1→3)‐β‐D ‐Glcp‐OPr, and α‐L ‐ Fucf ‐(1→4)‐β‐D ‐GlcpA‐OPr related to polysaccharides from the bacteria Klebsiella pneumoniae and Enterococcus faecalis and the brown seaweed Chordaria flagelliformis.  相似文献   

20.
The first total synthesis of the natural product (?)‐(19R)‐ibogamin‐19‐ol ((?)‐ 1 ) is reported (biogenetic atom numbering). Starting with L ‐glutamic acid from the chiral pool and (2S)‐but‐3‐en‐2‐ol, the crucial aliphatic isoquinuclidine (= 2‐azabicyclo[2.2.2]octane) core containing the entire configurational information of the final target was prepared in 15 steps (overall yield: 15%). The two key steps involved a highly effective, self‐immolating chirality transfer in an Ireland–Claisen rearrangement and an intramolecular nitrone‐olefin 1,3‐dipolar cycloaddition reaction (Scheme 3). Onto this aliphatic core was grafted the aromatic moiety in the form of N(1)‐protected 1H‐indole‐3‐acetic acid by application of the dicyclohexylcarbodiimide (DCC) method (Scheme 4). Four additional steps were required to adjust the substitution pattern at C(16) and to deprotect the indole subunit for the closure of the crucial 7‐membered ring present in the targeted alkaloid family (Schemes 4 and 5). The spectral and chiroptical properties of the final product (?)‐ 1 matched the ones reported for the naturally occurring alkaloid, which had been isolated from Tabernaemonatana quadrangularis in 1980. The overall yield of the entire synthesis involving a linear string of 20 steps amounted to 1.9% (average yield per step: 82%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号