首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Two isomeric achiral bent‐core liquid crystals involving a 4‐cyanoresorcinol core and containing a carbosilane unit as nanosegregating segment were synthesized and were shown to form ferroelectric liquid‐crystalline phases. Inversion of the direction of one of the COO groups in these molecules leads to a distinct distribution of the electrostatic potential along the surface of the molecule and to a strong change of the molecular dipole moments. Thus, a distinct degree of segregation of the carbosilane units and consequent modification of the phase structure and coherence length of polar order result. For the compound with larger dipole moment ( CN1 ) segregation of the carbosilane units is suppressed, and this compound forms paraelectric SmA and SmC phases; polar order is only achieved after transition to a new LC phase, namely, the ferroelectric leaning phase (SmCLsPS) with the unique feature that tilt direction and polar direction coincide. The isomeric compound CN2 with a smaller dipole moment forms separate layers of the carbosilane groups and shows a randomized polar SmA phase (SmAPAR) and ferroelectric polydomain SmCsPS phases with orthogonal combination of tilt and polar direction and much higher polarizations. Thus, surprisingly, the compound with the smaller molecular dipole moment shows increased polar order in the LC phases. Besides ferroelectricity, mirror‐symmetry breaking with formation of a conglomerate of macroscopic chiral domains was observed in one of the SmC phases of CN1 . These investigations contribute to the general understanding of the development of polar order and chirality in soft matter.  相似文献   

2.
A novel core–shell structured columnar liquid crystal composed of a donor‐acceptor dyad of tetraphenoxy perylene bisimide (PBI), decorated with four bithiophene units on the periphery, was synthesized. This molecule self‐assembles in solution into helical J‐aggregates guided by π–π interactions and hydrogen bonds which organize into a liquid‐crystalline (LC) columnar hexagonal domain in the solid state. Donor and acceptor moieties exhibit contrasting exciton coupling behavior with the PBIs’ (J‐type) transition dipole moment parallel and the bithiophene side arms’ (H‐type) perpendicular to the columnar axis. The dyad shows efficient energy and electron transfer in solution as well as in the solid state. The synergy of photoinduced electron transfer (PET) and charge transport along the narcissistically self‐assembled core–shell structure enables the implementation of the dye in two‐contact photoconductivity devices giving rise to a 20‐fold increased photoresponse compared to a reference dye without bithiophene donor moieties.  相似文献   

3.
A new perylene bisimide (PBI) dye self‐assembles through hydrogen bonds and π–π interactions into J‐aggregates that in turn self‐organize into liquid‐crystalline (LC) columnar hexagonal domains. The PBI cores are organized with the transition dipole moments parallel to the columnar axis, which is an unprecedented structural organization in π‐conjugated columnar liquid crystals. Middle and wide‐angle X‐ray analyses reveal a helical structure consisting of three self‐assembled hydrogen‐bonded PBI strands that constitute a single column of the columnar hexagonal phase. This remarkable assembly mode for columnar liquid crystals may afford new anisotropic LC materials for applications in photonics.  相似文献   

4.
We report on our serendipitous finding of the anomalous behavior of a novel liquid crystalline (LC) molecule U H/H , containing a U‐shaped handle. While U H/H itself shows a bicontinuous cubic (Cubbi) phase, U H/H in the presence of pyrene molecules as an external guest forms a hexagonal columnar (Colh) phase without phase separation. Interestingly, even when the pyrene molecules were covalently attached to U H/H ( U Py/Py ), the molecule exhibited a Colh phase, with a similar columnar geometry to that of U H/H mixed with pyrene molecules (1–4 equiv.). This result means that no matter how the pyrene moieties are incorporated in the LC system, the resultant material exhibited a similar molecular assembly with a columnar geometry. This finding is interesting because U H/H and pyrene molecules do not seem to have specific interactions or shape complementarity to form a columnar assembly, as in the case of U Py/Py . © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 342–351  相似文献   

5.
Series of new Ni(II) metalomesogens of triangular molecular shape and forming Colh liquid crystalline (LC) phase were synthesised and described. Using in the molecular core the barbituric moieties that contain carbonyl or thiocarbonyl groups causes strong polarisation of the molecules and creates a permanent dipole moment μ, which was confirmed by quantum mechanical calculations. The relationship between molecular dipole moment and self-organisation of molecules into the columnar phase was considered. The position of alkyl and alkoxy chains substituted at phenyl ring that affects LC phase formation seems to be connected with planar conformation of the attached chains. These can broaden the mesogenic core and stabilise the Colh mesophase.  相似文献   

6.
A series of meta‐substituted fatty acid octaester derivatives and their transition‐metal complexes of meso‐ tetraphenyl porphyrins (TPP‐8OOCR, with R=Cn?1H2n?1, n=8, 12, or 16) have been prepared through very simple synthesis protocols. The thermotropic phase behavior and the liquid crystalline (LC) organization structures of the synthesized porphyrin derivatives were systematically investigated by a combination of differential scanning calorimetry (DSC), polarized optical microscopy (POM), and variable‐temperature small‐angle X‐ray scattering/wide‐angle X‐ray scattering (SAXS/WAXS) techniques. The shorter octanoic acid ester substituted porphyrin (C8‐TPP) did not show liquid crystallinity and its metal porphyrins exhibited an uncommon columnar mesophase. The lauric acid octaester (C12‐TPP) and the palmitic acid octaester (C16‐TPP) series porphyrins generated hexagonal columnar mesophase Colh. Moreover, the metal porphyrins C12‐TPPM and C16‐TPPM with M=Zn, Cu, or Ni, exhibited well‐organized Colh mesophases of broad LC temperature ranges increasing in the order of TPPNi<TPPCu≤TPPZn with their increased effective ionic radii in the square‐planar coordination. The simplicity in synthesis, the well intercolumnar organization of Colh mesophase, the broadness of the discotic LC range, and the specific UV/Vis absorption and fluorescence emission behaviors make the symmetrically substituted fatty acid octaester porphyrins and their metal complexes very attractive for variant applications.  相似文献   

7.
Polymerization of p‐n‐hexyloxyphenylacetylene (pHPA) by using a [Rh(norbornadine)Cl]2‐triethylamine catalyst was carried out at room temperature to afford stereoregular helical poly(pn‐hexyloxyphenylacetylene)s (PpHPAs). When ethanol and n‐hexane were used as polymerization solvents, a bright yellow PpHPAs, poly( Y ) with Mn = 8.5 × 104 and its purple red polymer, poly( R ) with Mn = 5.3 × 104 were obtained in 95% yields and 84% yields, respectively. Diffuse reflective UV–vis spectra of poly( Y ) and poly( R ) in solid phase showed different broad absorption peaks at 445 and 575 nm, respectively. X‐Ray diffraction patterns of poly( Y ) and poly( R ) showed typical columnar structures assignable to cis‐transoid and cis‐cisoid structures, respectively, which were also supported by molecule mechanics calculation. Poly( Y ) was irreversibly transformed to a reddish‐black polymer, poly( Y‐B ), which columnar diameter was nearly the same as that of poly( R ). Further, poly( Y ) showed an exothermic peak in the differential scanning calorimetry trace at 80 °C for 1 h in N2 gas. Thus, these findings suggest a thermally irreversible rearrangement from an unstable cis‐transoid form, poly( Y ) with a stretched cis‐transoid helix to a stable cis‐cisoid form, poly( R ), with a contracted cis‐cisoid helix in the solid phase to give poly( Y → B ) with the cis‐cisoid form. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

8.
Two novel nonsymmetrical disc‐shaped molecules 1 and 2 based on 3,3′‐bis(acylamino)‐2,2′‐bipyridine units were synthesized by means of a statistical approach. Discotic 1 possesses six chiral dihydrocitronellyl tails and one peripheral phenyl group, whereas discotic 2 possesses six linear dodecyloxy tails and one peripheral pyridyl group. Preorganization by strong intramolecular hydrogen bonding and subsequent aromatic interactions induce self‐assembly of the discotics. Liquid crystallinity of 1 and 2 was determined with the aid of polarized optical microscopy, differential scanning calorimetry, and X‐ray diffraction. Two columnar rectangular mesophases (Colr) have been identified, whereas for C3‐symmetrical derivatives only one Colr mesophase has been found. 1 In solution, the molecularly dissolved state in chloroform was studied with 1H NMR spectroscopy, whereas the self‐assembled state in apolar solution was examined with optical spectroscopy. Remarkably, these desymmetrized discotics, which lack one aliphatic wedge, behave similar to the symmetric parent compound. To prove that the stacking behavior of discotics 1 and 2 is similar to that of reported C3‐symmetrical derivatives, a mixing experiment of chiral 1 with C3‐symmetrical 13 has been undertaken; it has shown that they indeed belong to one type of self‐assembly. This helical J‐type self‐assembly was further confirmed with UV/Vis and photoluminescence (PL) spectroscopy. Eventually, disc 2 , functionalized with a hydrogen‐bonding acceptor moiety, might perform secondary interactions with molecules such as acids.  相似文献   

9.
The columnar liquid‐crystalline (LC) and fluorescence properties of three‐dimensional molecular propellers based on tetraphenylethylene is reported. X‐ray scattering studies reveal an unusual transition from a rectangular (Colrec) to a hexagonal columnar (Colhex) phase. In contrast to second‐order intercolumnar transitions based on a common tilt mechanism, the transition is first order and involves an unprecedented zigzag stacking of aromatic propellers in the Colrec phase. A sudden change in emission color from sky blue to green occurs rapidly and reversibly at this transition, which is due to the planarization of the propeller mesogen.  相似文献   

10.
This paper presents a systematic study of two series of carbosilane liquid crystalline (LC) dendrimers from first to fifth generations bearing 8, 16, 32, 64 and 128 terminal chiral mesogenic groups, respectively. All the LC dendrimers synthesized are characterized by the same glass transition temperature around -5°C. It has been shown that the LC dendrimers of the lower generations (G-1-G-3) form a ferroelectric SmC* phase over a very broad temperature range up to about 180°C, while the LC dendrimers of the higher generations (G-4 and G-5) display a rectangular columnar mesophase (Colr). Schemes of packing in the SmC* and Colr mesophases formed by the LC dendrimers are suggested and discussed. Electrical measurements on the ferroelectric LC dendrimers have shown that an increase in generation number leads to a decrease in the value of the spontaneous polarization and an increase in switching time.  相似文献   

11.
Here, we report on a new single‐molecule‐switching concept based on the coordination‐sphere‐dependent spin state of FeII species. The perpendicular arrangement of two terpyridine (tpy) ligands within heteroleptic complexes is distorted by the applied electric field. Whereas one ligand fixes the complex in the junction, the second one exhibits an intrinsic dipole moment which senses the E field and causes the distortion of the FeII coordination sphere triggering the alteration of its spin state. A series of complexes with different dipole moments have been synthesized and their transport features were investigated via mechanically controlled break‐junctions. Statistical analyses support the hypothesized switching mechanism with increasing numbers of junctions displaying voltage‐dependent bistabilities upon increasing the FeII complexes’ intrinsic dipole moments. A constant threshold value of the E field required for switching corroborates the mechanism.  相似文献   

12.
A solid‐state fluorescent host system was created by self‐assembly of a 21‐helical columnar organic fluorophore composed of (1R,2S)‐2‐amino‐1,2‐diphenylethanol and fluorescent 1‐pyrenecarboxylic acid. This host system has a characteristic 21‐helical columnar hydrogen‐ and ionic‐bonded network. Channel‐like cavities are formed by self‐assembly of this column, and various guest molecules can be included by tuning the packing of this column. Moreover, the solid‐state fluorescence of this host system can change according to the included guest molecules. This occurs because of the change in the relative arrangement of the pyrene rings as they adjust to the tuning of the packing of the shared 21‐helical column, according to the size of the included guest molecules. Therefore, this host system can recognize slight differences in molecular size and shape.  相似文献   

13.
Liquid crystalline (LC) polyphenylene derivatives, such as poly(para‐phenylene) (PPP), poly(meta‐phenylene) (PMP), poly(meta‐biphenylene) (PBP), and poly (meta‐terphenylene) (PTP) derivatives, were synthesized through substitution of fluorine‐containing chiral LC groups into side chains, with an aim to develop ferroelectric LC (FLC) conjugated polymers. All the polymers, except PTP, showed enantiotropic liquid crystallinities, where several types of mesophases were observed in both heating and cooling processes. Among them, PPP and PMP derivatives showed chiral smectic C (SC*) phases responsible for ferroelectricity. In fact, they exhibited quick response to electric field, in spite of high viscosities inherent to polymers, giving rise to switching times of less than 1 s between two SC states with reversely directed alignment. Hysteresis loops between the polarization and electric field were also observed for PPP and PMP. The spontaneous polarization (PS) of PMP remained unchanged even after the electric field became zero, affording the residual polarization (PR) whose value was the same as that of PS. This indicates that PMP has a prospective memory function based on FLC nature. The present study is the first report for realizing a quick switching in macroscopic alignment using electric field and also for generating a potential memory function in π‐conjugated polymers. It is elucidated that unusual polymer main chains such as polyphenylenes can be used to prepare new ferroelectric polymers. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3591–3610, 2008  相似文献   

14.
An S‐shaped double helicene‐like molecule (>99 % ee), possessing stable helical chirality, has been synthesized by the rhodium(I)/difluorphos complex‐catalyzed highly diastereo‐ and enantioselective intramolecular double [2+2+2] cycloaddition of a 2‐naphthol‐ and benzene‐linked hexayne. The collision between two terminal naphthalene rings destabilizes the helical chirality of the S‐shaped double helicene‐like molecule, but the introduction of two additional fused benzene rings significantly increases the configurational stability. Thus, no epimerization and racemization were observed even at 100 °C. The enantiopure S‐shaped double helicene‐like molecule forms a trimer through the multiple C?H???π and C?H???O interactions in the solid‐state. The trimers stack to form columnar packing structures, in which neighboring stacks have opposite dipole directions. The accumulation of helical structures in the same direction in the S‐shaped double helicene‐like molecule enhanced the chiroptical properties.  相似文献   

15.
Two liquid crystalline vanadyl complexes have been studied by frequency domain dielectric spectroscopy over the range 10 mHz to 13 MHz. The materials exhibit two or three columnar phases denoted Colro, Colrd, and Colhd that were identified by X-ray diffraction. In the higher temperature Colrd phase, a relaxation process in the kHz range is observed that is attributed to the reorientation about the molecular short axis. A pronounced dielectric relaxation process shows up in the low temperature Colro phase at hertz and sub-hertz frequencies. This slow relaxation is assigned to reorientation of the molecular dipoles within the polar linear chains, which are aligned along the column's axis. Triangular wave switching studies at low frequency reveal processes inside the Colro phase which are most probably due to ionic/charges relaxations but a ferroelectric switching for an achiral discotic system cannot be ruled out completely. Below the Colro phase there is an orientationally disordered crystalline Crx phase with disordered side chain dipoles. A dielectric relaxation process connected with the intramolecular relaxation of the alkoxy side chains, similar to the beta-process of polymers, has been found in the lower temperature Crx phase.  相似文献   

16.
The biologically transformed product of estradiol valerate, namely 3,7α‐dihydroxyestra‐1,3,5(10)‐trien‐17‐one monohydrate, C18H22O3·H2O, has been investigated using UV–Vis, IR, 1H and 13C NMR spectroscopic techniques, as well as by mass spectrometric analysis. Its crystal structure was determined using single‐crystal X‐ray diffraction based on data collected at 100 K. The structure was refined using the independent atom model (IAM) and the transferred electron‐density parameters from the ELMAM2 database. The structure is stabilized by a network of hydrogen bonds and van der Waals interactions. The topology of the hydrogen bonds has been analyzed by the Bader theory of `Atoms in Molecules' framework. The molecular electrostatic potential for the transferred multipolar atom model reveals an asymmetric character of the charge distribution across the molecule due to a substantial charge delocalization within the molecule. The molecular dipole moment was also calculated, which shows that the molecule has a strongly polar character.  相似文献   

17.
Hexasubstituted C3‐symmetric benzenes with three oligophenylenevinylene (OPV) arms and three pyridyl or phenyl substituents are shape‐persistent star mesogens that are sterically crowded in the center. Such molecular structures possess large void spaces between their arms, which have to be filled in condensed phases. For the neat materials, this is accomplished by an exceptional formation of dimers and short‐range helical packing in columnar mesophases. The mesophase is thermodynamically stable for the pyridyl compound. Only this derivative forms filled star‐shaped supermesogens in the presence of various carboxylic acids. The latter do not arrange as dimers, but as monomers along the columnar stacks. In this liquid crystal (LC) phase, the guests are completely enclosed by the hosts. Therefore, the host can be regarded as a new LC endoreceptor, which allows the design of columnar functional structures in the future.  相似文献   

18.
Abstract

The synthesis of a new disc-like mesogenic compound permitted, for the first time, ferroelectric electrooptical switching in a tilted columnar liquid crystal. The spontaneous molecular dipole moment is induced by the bend between the dibenzopyrene core and part of the eight O-hexyllactic acid chains attached to it. Two similar new compounds displayed a weak electrooptical effect in the columnar phase.  相似文献   

19.
Three kinds of chiral saccharide‐containing liquid crystalline (LC) acetylenic monomers were prepared by click reaction between 2‐azidoethyl‐2,3,4,6‐tetraacetyl‐β‐D ‐galactopyranoside and 1‐biphenylacetylene 4‐alkynyloxybenzoate. The obtained monomers were polymerized by WCl6‐Ph4Sn to form three side‐chain LC polyacetylenes containing 1‐[2‐(2,3,4,6‐tetraacetyl‐β‐D ‐galactopyranos‐1‐yl)‐ethyl]‐1H‐[1,2,3]‐triazol‐4′‐biphenyl 4‐alkynyloxybenzoate side groups. All monomers and polymers show a chiral smectic A phase. Self‐assembled hiearchical superstructures of the chiral saccharide‐containing LCs and LCPs in solution state were studied by field‐emission scanning electron microscopy. Because of the LC behavior, the LC molecules exhibit a high segregation strength for phase separation in dilute solution (THF/H2O = 1:9 v/v). The self‐assembled morphology of LC monomers was dependent upon the alkynyloxy chain length. Increasing the alkynyloxy chain length caused the self‐assembled morphology to change from a platelet‐like texture ( LC‐6 ) to helical twists morphology ( LC‐11 and LC‐12 ). Furthermore, the helical twist morphological structure can be aligned on the polyimide rubbed glass substrate to form two‐dimensional ordered helical patterns. In contrast to LC monomers, the LCP‐11 self‐assembled into much more complicate morphologies, including nanospheres and helical nanofibers. These nanofibers are evolved from the helical cables ornamented with entwining nanofibers upon natural evaporation of the solution in a mixture with a THF/methanol ratio of 3:7. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6596–6611, 2009  相似文献   

20.
Three 1‐phenylindolin‐2‐one derivatives, namely 1‐phenylindolin‐2‐one, C14H11NO, (I), 5‐bromo‐1‐phenylindolin‐2‐one, C14H10BrNO, (II), and 5‐iodo‐1‐phenylindolin‐2‐one, C14H10INO, (III), have been synthesized and their structures determined. Compounds (I) and (II) crystallized in the centrosymmetric space groups Pbca and P21/c, respectively, while compound (III) crystallized in the polar space group Aea2. Density functional theory (DFT) calculations show that the molecular dipole moment gradually decreases in the order (I) > (II) > (III). The relatively smaller dipole moment of (III) and the larger non‐electrostatic intermolecular interactions may be the main reasons for the noncentrosymmetric and polar structure of (III).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号