首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The reaction of [Ni(COD)2] with one equivalent of DABMes (DABMes = (2,4,6‐Me3C6H2)N=C(Me)‐C(Me)=N(2,4,6‐Me3C6H2)) affords a mixture of the compound [Ni(DABMes)2] ( 2 ) and starting material [Ni(COD)2]. The crystallographically characterized, diamagnetic complex 2 can be obtained in a stoichiometric reaction of [Ni(COD)2] and two equivalents of DABMes. This reaction can be accelerated by addition of 1‐chloro‐fluorobenzene or methyl iodide. In the presence of 1‐chloro‐fluorobenzene, [Ni(DABMes)(COD)] ( 3 ) is available via reaction of [Ni(COD)2] and one equivalent of DABMes. The crystallographically characterized complex 3 reacts with diphenylacetylene to afford [Ni(DABMes)(Ph‐C≡C‐Ph)] ( 4 ). A long‐wavelength absorption band in the UV‐Vis spectrum of this compound has to be assigned to a mixed MLCT/LL′CT transition, as quantum chemical calculations reveal.  相似文献   

2.
The “masked” terminal Zn sulfide, [K(2.2.2‐cryptand)][MeLZn(S)] ( 2 ) (MeL={(2,6‐iPr2C6H3)NC(Me)}2CH), was isolated via reaction of [MeLZnSCPh3] ( 1 ) with 2.3 equivalents of KC8 in THF, in the presence of 2.2.2‐cryptand, at ?78 °C. Complex 2 reacts readily with PhCCH and N2O to form [K(2.2.2‐cryptand)][MeLZn(SH)(CCPh)] ( 4 ) and [K(2.2.2‐cryptand)][MeLZn(SNNO)] ( 5 ), respectively, displaying both Brønsted and Lewis basicity. In addition, the electronic structure of 2 was examined computationally and compared with the previously reported Ni congener, [K(2.2.2‐cryptand)][tBuLNi(S)] (tBuL={(2,6‐iPr2C6H3)NC(tBu)}2CH).  相似文献   

3.
The first N‐heterocyclic carbene adducts of arylchlorosilylenes are reported and compared with the homologous germanium compounds. The arylsilicon(II) chlorides SiArCl(Im‐Me4) [Ar=C6H3‐2,6‐Mes2 (Mes=C6H2‐2,4,6‐Me3), C6H3‐2,6‐Trip2 (Trip=C6H2‐2,4,6‐iPr3)] were obtained selectively on dehydrochlorination of the arylchlorosilanes SiArHCl2 with 1,3,4,5‐tetramethylimidazol‐2‐ylidene (Im‐Me4). The analogous arylgermanium(II) chlorides GeArCl(Im‐Me4) were prepared by metathetical exchange of GeCl2(Im‐Me4) with LiC6H3‐2,6‐Mes2 or addition of Im‐Me4 to GeCl(C6H3‐2,6‐Trip2). All compounds were fully characterized. Density functional calculations on ECl(C6H3‐2,6‐Trip2)(Im‐Me4), where E=Si, Ge, at different levels of theory show very good agreement between calculated and experimental bonding parameters, and NBO analyses reveal similar electronic structures of the two aryltetrel(II) chlorides. The low gas‐phase Gibbs free energy of bond dissociation of SiCl(C6H3‐2,6‐Trip2)(Im‐Me4) (Δ${G{{{\circ}\hfill \atop {\rm calcd}\hfill}}}$ =28.1 kJ mol?1) suggests that the carbene adducts SiArCl(Im‐Me4) may be valuable transfer reagents of the arylsilicon(II) chlorides SiArCl.  相似文献   

4.
The phosphines L1PPh2 (1) and L2PPh2 (2) containing different Y,C,Y‐chelating ligands, L1 = 2,6‐(tBuOCH2)2C6H3? and L2 = 2,6‐(Me2NCH2)2C6H3?, were treated with PdCl2 and di‐µ‐chloro‐bis[2‐[(N,N‐dimethylamino)methyl]phenyl‐C,N]‐dipalladium(II) and yielded complexes trans‐{[2,6‐(tBuOCH2)2C6H3]PPh2}2PdCl2 (3), {[2,6‐(Me2NCH2)2C6H3]PPh2} PdCl2 (4), {[2,6‐(tBuOCH2)2C6H3]PPh2}Pd(Cl)[2‐(Me2NCH2)C6H4] (5) and {[2,6‐(Me2NCH2)2C6H3]PPh2}Pd(Cl)[2‐(Me2NCH2)C6H4] (6) as the result of different ability of starting phosphines 1 and 2 to complex PdCl2. Compounds 3–6 were characterized by 1H, 13C, 31P NMR spectroscopy and ESI‐MS. The molecular structures of 3,4 and 6 were also determined by X‐ray diffraction analysis. The catalytic activity of complexes 3–6 was evaluated in the Suzuki‐Miyaura cross‐coupling reaction. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Kinetically stabilized congeners of carbenes, R2C, possessing six valence electrons (four bonding electrons and two non‐bonding electrons) have been restricted to Group 14 elements, R2E (E=Si, Ge, Sn, Pb; R=alkyl or aryl) whereas isoelectronic Group 15 cations, divalent species of type [R2E]+ (E=P, As, Sb, Bi; R=alkyl or aryl), were unknown. Herein, we report the first two examples, namely the bismuthenium ion [(2,6‐Mes2C6H3)2Bi][BArF4] ( 1 ; Mes=2,4,6‐Me3C6H2, ArF=3,5‐(CF3)2C6H3) and the stibenium ion [(2,6‐Mes2C6H3)2Sb][B(C6F5)4] ( 2 ), which were obtained by using a combination of bulky meta‐terphenyl substituents and weakly coordinating anions.  相似文献   

6.
The trapping of a silicon(I) radical with N‐heterocyclic carbenes is described. The reaction of the cyclic (alkyl)(amino) carbene [cAACMe] (cAACMe=:C(CMe2)2(CH2)NAr, Ar=2,6‐i Pr2C6H3) with H2SiI2 in a 3:1 molar ratio in DME afforded a mixture of the separated ion pair [(cAACMe)2Si:.]+I ( 1 ), which features a cationic cAAC–silicon(I) radical, and [cAACMe−H]+I. In addition, the reaction of the NHC–iodosilicon(I) dimer [IAr(I)Si:]2 (IAr=:C{N(Ar)CH}2) with 4 equiv of IMe (:C{N(Me)CMe}2), which proceeded through the formation of a silicon(I) radical intermediate, afforded [(IMe)2SiH]+I ( 2 ) comprising the first NHC–parent‐silyliumylidene cation. Its further reaction with fluorobenzene afforded the CAr−H bond activation product [1‐F‐2‐IMe‐C6H4]+I ( 3 ). The isolation of 2 and 3 confirmed the reaction mechanism for the formation of 1 . Compounds 1 – 3 were analyzed by EPR and NMR spectroscopy, DFT calculations, and X‐ray crystallography.  相似文献   

7.
The “masked” terminal Zn sulfide, [K(2.2.2-cryptand)][MeLZn(S)] ( 2 ) (MeL={(2,6-iPr2C6H3)NC(Me)}2CH), was isolated via reaction of [MeLZnSCPh3] ( 1 ) with 2.3 equivalents of KC8 in THF, in the presence of 2.2.2-cryptand, at −78 °C. Complex 2 reacts readily with PhCCH and N2O to form [K(2.2.2-cryptand)][MeLZn(SH)(CCPh)] ( 4 ) and [K(2.2.2-cryptand)][MeLZn(SNNO)] ( 5 ), respectively, displaying both Brønsted and Lewis basicity. In addition, the electronic structure of 2 was examined computationally and compared with the previously reported Ni congener, [K(2.2.2-cryptand)][tBuLNi(S)] (tBuL={(2,6-iPr2C6H3)NC(tBu)}2CH).  相似文献   

8.
The intramolecularly coordinated phosphine and stibine ligands L1PPh2 ( 1 ), L2PPh2 ( 2 ) and L2SbPh2 ( 3 ) containing Y,C,Y‐chelating ligands, L1 = 2,6‐(tBuOCH2)2C6H4? and L2 = 2,6‐(Me2NCH2)2C6H4?, were prepared and characterized. The treatment of these ligands 1 , 2 , 3 with PtCl2 yielded complexes trans‐{[2,6‐(tBuOCH2)2C6H3]PPh2}2PtCl2 (4), cis‐{[2,6‐(Me2NCH2)2C6H3]PPh2}PtCl2 (5), and cis‐{[2,6‐(Me2NCH2)2C6H3]SbPh2}PtCl2 (6) as the result of different ability of the starting compounds 1 , 2 , 3 to complex platinum centre. Compounds 1 , 2 , 3 , 4 , 5 , 6 were characterized by 1H, 13C and 31P NMR spectroscopy and electrospray ionization mass spectrometry, and molecular structures of 3 , 4 , 5 , 6 were determined by X‐ray diffraction analysis. The substitution reactions of complexes 4 , 5 , 6 were also studied. The reaction of 5 and 6 with NaI yielded complexes {[2,6‐(Me2NCH2)2C6H3]PPh2}PtI2 ( 7 ) and {[2,6‐(Me2NCH2)2C6H3]SbPh2}PtI2 ( 8 ), while the same reaction of 4 with NaI did not proceed. As the compounds 7 and 8 structurally resemble cisplatin, complex {{[2‐(Me2NCH2)‐6‐(Me2NHCH2)C6H3]PPh2}PtCl2}+Cl? ( 9 ) was prepared as water‐soluble platinum complex. The cytotoxic effect of complex 9 was evaluated on human T‐lymphocytic leukemia cells MOLT‐4 (IC50 = 27.6 ± 1.8 µmol l?1) and human promyelocytic leukemia HL‐60 (IC50 = 55.9 ± 4.9 µmol l?1). Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
The organoantimony(III) difluorides containing Y,C,Y-chelating, so called pincer, ligands ([2,6-(YCH2)2C6H3]SbF2; Y = MeO, t-BuO and Me2N) were prepared by the reaction of corresponding dichlorides ([2,6-(YCH2)2C6H3]SbCl2; Y = MeO, t-BuO and Me2N) with two equivalents of organotin(IV) fluorinating agents Me3SnF or 2-(Me2NCH2)C6H4Sn(n-Bu2)F, respectively. The structure of organonantimony fluorides was determined both in solution by 1H, 13C and 19F NMR spectroscopy and in the solid state using X-ray diffraction.  相似文献   

10.
The bis(silyl)triazene compound 2,6‐(Me3Si)2‐4‐Me‐1‐(N?N? NC4H8)C6H2 ( 4 ) was synthesized by double lithiation/silylation of 2,6‐Br2‐4‐Me‐1‐(N?N? NC4H8)C6H2 ( 1 ). Furthermore, 2,6‐bis[3,5‐(CF3)2‐C6H3]‐4‐Me‐C6H2‐1‐(N?N? NC4H8)C6H2 derivative 6 can be easily synthesized by a C,C‐bond formation reaction of 1 with the corresponding aryl‐Grignard reagent, i.e., 3,5‐bis[(trifluoromethyl)phenyl]magnesium bromide. Reactions of compound 4 with KI and 6 with I2 afforded in good yields novel phenyl derivatives, 2,6‐(Me3Si)2‐4‐MeC6H2? I and 2,6‐bis[3,5‐(CF3)2? C6H3]‐4‐MeC6H2? I ( 5 and 7 , resp.). On the other hand, the analogous m‐terphenyl 1,3‐diphenylbenzene compound 2,6‐bis[3,5‐(CF3)2? C6H3]C6H3? I ( 8 ) could be obtained in moderate yield from the reaction of (2,6‐dichlorophenyl)lithium and 2 equiv. of aryl‐Grignard reagent, followed by the reaction with I2. Different attempts to introduce the tBu (Me3C) or neophyl (PhC(Me)2CH2) substituents in the central ring were unsuccessful. All the compounds were fully characterized by elemental analysis, melting point, IR and NMR spectroscopy. The structure of compound 6 was corroborated by single‐crystal X‐ray diffraction measurements.  相似文献   

11.
Reactions of bis(phosphinimino)amines LH and L′H with Me2S ? BH2Cl afforded chloroborane complexes LBHCl ( 1 ) and L′BHCl ( 2 ), and the reaction of L′H with BH3 ? Me2S gave a dihydridoborane complex L′BH2 ( 3 ) (LH=[{(2,4,6‐Me3C6H2N)P(Ph2)}2N]H and L′H=[{(2,6‐iPr2C6H3N)P(Ph2)}2N]H). Furthermore, abstraction of a hydride ion from L′BH2 ( 3 ) and LBH2 ( 4 ) mediated by Lewis acid B(C6F5)3 or the weakly coordinating ion pair [Ph3C][B(C6F5)4] smoothly yielded a series of borenium hydride cations: [L′BH]+[HB(C6F5)3]? ( 5 ), [L′BH]+[B(C6F5)4]? ( 6 ), [LBH]+[HB(C6F5)3]? ( 7 ), and [LBH]+[B(C6F5)4]? ( 8 ). Synthesis of a chloroborenium species [LBCl]+[BCl4]? ( 9 ) without involvement of a weakly coordinating anion was also demonstrated from a reaction of LBH2 ( 4 ) with three equivalents of BCl3. It is clear from this study that the sterically bulky strong donor bis(phosphinimino)amide ligand plays a crucial role in facilitating the synthesis and stabilization of these three‐coordinated cationic species of boron. Therefore, the present synthetic approach is not dependent on the requirement of weakly coordinating anions; even simple BCl4? can act as a counteranion with borenium cations. The high Lewis acidity of the boron atom in complex 8 enables the formation of an adduct with 4‐dimethylaminopyridine (DMAP), [LBH ? (DMAP)]+[B(C6F5)4]? ( 10 ). The solid‐state structures of complexes 1 , 5 , and 9 were investigated by means of single‐crystal X‐ray structural analysis.  相似文献   

12.
The reduction of N,C,N‐chelated bismuth chlorides [C6H3‐2,6‐(CH?NR)2]BiCl2 [where R=tBu ( 1 ), 2′,6′‐Me2C6H3 ( 2 ), or 4′‐Me2NC6H4 ( 3 )] or N,C‐chelated analogues [C6H2‐2‐(CH?N‐2′,6′‐iPr2C6H3)‐4,6‐(tBu)2]BiCl2 ( 4 ) and [C6H2‐2‐(CH2NEt2)‐4,6‐(tBu)2]BiCl2 ( 5 ) is reported. Reduction of compounds 1 – 3 gave monomeric N,C,N‐chelated bismuthinidenes [C6H3‐2,6‐(CH?NR)2]Bi [where R=tBu ( 6 ), 2′,6′‐Me2C6H3 ( 7 ) or 4′‐Me2NC6H4 ( 8 )]. Similarly, the reduction of 4 led to the isolation of the compound [C6H2‐2‐(CH?N‐2′,6′‐iPr2C6H3)‐4,6‐(tBu)2]Bi ( 9 ) as an unprecedented two‐coordinated bismuthinidene that has been structurally characterized. In contrast, the dibismuthene {[C6H2‐2‐(CH2NEt2)‐4,6‐(tBu)2]Bi}2 ( 10 ) was obtained by the reduction of 5 . Compounds 6 – 10 were characterized by using 1H and 13C NMR spectroscopy and their structures, except for 7 , were determined with the help of single‐crystal X‐ray diffraction analysis. It is clear that the structure of the reduced products (bismuthinidene versus dibismuthene) is ligand‐dependent and particularly influenced by the strength of the N→Bi intramolecular interaction(s). Therefore, a theoretical survey describing the bonding situation in the studied compounds and related bismuth(I) systems is included. Importantly, we found that the C3NBi chelating ring in the two‐coordinated bismuthinidene 9 exhibits significant aromatic character by delocalization of the bismuth lone pair.  相似文献   

13.
A series of new titanium(IV) complexes with o‐metalated arylimine and/or cis‐9,10‐dihydrophenanthrenediamide ligands, [o‐C6H4(CH?NR)TiCl3] (R=2,6‐iPr2C6H3 ( 3 a ), 2,6‐Me2C6H3 ( 3 b ), tBu ( 3 c )), [cis‐9,10‐PhenH2(NR)2TiCl2] (PhenH2=9,10‐dihydrophenanthrene; R=2,6‐iPr2C6H3 ( 4 a ), 2,6‐Me2C6H3 ( 4 b ), tBu ( 4 c )), [{cis‐9,10‐PhenH2(NR)2}{o‐C6H4(HC?NR)}TiCl] (R=2,6‐iPr2C6H3 ( 5 a ), 2,6‐Me2C6H3 ( 5 b ), tBu ( 5 c )), have been synthesised from the reactions of TiCl4 with o‐C6H4(CH?NR)Li (R=2,6‐iPr2C6H3, 2,6‐Me2C6H3, tBu). Complexes 4 and 5 were formed unexpectedly from the reactions of TiCl4 with two or three equivalents of the corresponding o‐C6H4(CH?NR)Li followed by sequential intramolecular C? C bond‐forming reductive elimination and oxidative coupling reactions. Attempts to isolate the intermediates, [{o‐C6H4(CH?NR)}2TiCl2] ( 2 ), were unsuccessful. All complexes were characterised by 1H and 13C NMR spectroscopy, and the molecular structures of 3 a , 4 a – c , 5 a , and 5 c were determined by X‐ray crystallography.  相似文献   

14.
A family of unsymmetrical 1,2‐bis(imino)acenaphthene‐palladium methyl chloride complexes [1‐[2,6‐{(C6H5)2CH}2‐ 4‐{C(CH3)3}‐C6H2N]‐2‐(ArN)C2C10H6]PdMeCl (Ar = 2,6‐Me2Ph Pd1 , 2,6‐Et2Ph Pd2 , 2,6‐iPr2Ph Pd3 , 2,4,6‐Me3Ph Pd4 , 2,6‐Et2‐4‐MePh Pd5 ) have been prepared and fully characterized by 1H/13C NMR, FTIR spectroscopies, and elemental analysis. X‐ray diffraction analysis of Pd2 complex revealed a square planar geometry. Upon activation with methylaluminoxane, all the palladium complexes displayed high activities for norbornene (NBE) homo‐polymerization producing insoluble polymer. For the copolymerization of NBE with ethylene, Pd4 complex exhibited good activities with high incorporation of ethylene (up to 59.2–77.4%) and the resultant copolymer showed high molecular weights as maximum as 150.5 kg mol−1. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 922–930  相似文献   

15.
The trapping of a silicon(I) radical with N-heterocyclic carbenes is described. The reaction of the cyclic (alkyl)(amino) carbene [cAACMe] (cAACMe=:C(CMe2)2(CH2)NAr, Ar=2,6-iPr2C6H3) with H2SiI2 in a 3:1 molar ratio in DME afforded a mixture of the separated ion pair [(cAACMe)2Si:.]+I ( 1 ), which features a cationic cAAC–silicon(I) radical, and [cAACMe−H]+I. In addition, the reaction of the NHC–iodosilicon(I) dimer [IAr(I)Si:]2 (IAr=:C{N(Ar)CH}2) with 4 equiv of IMe (:C{N(Me)CMe}2), which proceeded through the formation of a silicon(I) radical intermediate, afforded [(IMe)2SiH]+I ( 2 ) comprising the first NHC–parent-silyliumylidene cation. Its further reaction with fluorobenzene afforded the CAr−H bond activation product [1-F-2-IMe-C6H4]+I ( 3 ). The isolation of 2 and 3 confirmed the reaction mechanism for the formation of 1 . Compounds 1 – 3 were analyzed by EPR and NMR spectroscopy, DFT calculations, and X-ray crystallography.  相似文献   

16.
A series of new germylene compounds has been synthesized offering systematic variation in the σ‐ and π‐capabilities of the α‐substituent and differing levels of reactivity towards E?H bond activation (E=H, B, C, N, Si, Ge). Chloride metathesis utilizing [(terphenyl)GeCl] proves to be an effective synthetic route to complexes of the type [(terphenyl)Ge(ERn)] ( 1 – 6 : ERn=NHDipp, CH(SiMe3)2, P(SiMe3)2, Si(SiMe3)3 or B(NDippCH)2; terphenyl=C6H3Mes2‐2,6=ArMes or C6H3Dipp2‐2,6=ArDipp; Dipp=C6H3iPr2‐2,6, Mes=C6H2Me3‐2,4,6), while the related complex [{(Me3Si)2N}Ge{B(NDippCH)2}] ( 8 ) can be accessed by an amide/boryl exchange route. Metrical parameters have been probed by X‐ray crystallography, and are consistent with widening angles at the metal centre as more bulky and/or more electropositive substituents are employed. Thus, the widest germylene units (θ>110°) are found to be associated with strongly σ‐donating boryl or silyl ancillary donors. HOMO–LUMO gaps for the new germylene complexes have been appraised by DFT calculations. The aryl(boryl)‐germylene system [ArMesGe{B(NDippCH)2}] ( 6 ‐Mes), which features a wide C‐Ge‐B angle (110.4(1)°) and (albeit relatively weak) ancillary π‐acceptor capabilities, has the smallest HOMO–LUMO gap (119 kJ mol?1). These features result in 6 ‐Mes being remarkably reactive, undergoing facile intramolecular C?H activation involving one of the mesityl ortho‐methyl groups. The related aryl(silyl)‐germylene system, [ArMesGe{Si(SiMe3)3}] ( 5 ‐Mes) has a marginally wider HOMO–LUMO gap (134 kJ mol?1), rendering it less labile towards decomposition, yet reactive enough to oxidatively cleave H2 and NH3 to give the corresponding dihydride and (amido)hydride. Mixed aryl/alkyl, aryl/amido and aryl/phosphido complexes are unreactive, but amido/boryl complex 8 is competent for the activation of E?H bonds (E=H, B, Si) to give hydrido, boryl and silyl products. The results of these reactivity studies imply that the use of the very strongly σ‐donating boryl or silyl substituents is an effective strategy for rendering metallylene complexes competent for E?H bond activation.  相似文献   

17.
The five‐coordinate ruthenium N‐heterocyclic carbene (NHC) hydrido complexes [Ru(IiPr2Me2)4H][BArF4] ( 1 ; IiPr2Me2=1,3‐diisopropyl‐4,5‐dimethylimidazol‐2‐ylidene; ArF=3,5‐(CF3)2C6H3), [Ru(IEt2Me2)4H][BArF4] ( 2 ; IEt2Me2=1,3‐diethyl‐4,5‐dimethylimidazol‐2‐ylidene) and [Ru(IMe4)4H][BArF4] ( 3 ; IMe4=1,3,4,5‐tetramethylimidazol‐2‐ylidene) have been synthesised following reaction of [Ru(PPh3)3HCl] with 4–8 equivalents of the free carbenes at ambient temperature. Complexes 1 – 3 have been structurally characterised and show square pyramidal geometries with apical hydride ligands. In both dichloromethane or pyridine solution, 1 and 2 display very low frequency hydride signals at about δ ?41. The tetramethyl carbene complex 3 exhibits a similar chemical shift in toluene, but shows a higher frequency signal in acetonitrile arising from the solvent adduct [Ru(IMe4)4(MeCN)H][BArF4], 4 . The reactivity of 1 – 3 towards H2 and N2 depends on the size of the N‐substituent of the NHC ligand. Thus, 1 is unreactive towards both gases, 2 reacts with both H2 and N2 only at low temperature and incompletely, while 3 affords [Ru(IMe4)42‐H2)H][BArF4] ( 7 ) and [Ru(IMe4)4(N2)H][BArF4] ( 8 ) in quantitative yield at room temperature. CO shows no selectivity, reacting with 1 – 3 to give [Ru(NHC)4(CO)H][BArF4] ( 9 – 11 ). Addition of O2 to solutions of 2 and 3 leads to rapid oxidation, from which the RuIII species [Ru(NHC)4(OH)2][BArF4] and the RuIV oxo chlorido complex [Ru(IEt2Me2)4(O)Cl][BArF4] were isolated. DFT calculations reproduce the greater ability of 3 to bind small molecules and show relative binding strengths that follow the trend CO ? O2 > N2 > H2.  相似文献   

18.
Experimental and theoretical studies on equilibria between iridium hydride alkylidene structures, [(TpMe2)Ir(H){?C(CH2R)ArO }] (TpMe2=hydrotris(3,5‐dimethylpyrazolyl)borate; R=H, Me; Ar=substituted C6H4 group), and their corresponding hydride olefin isomers, [(TpMe2)Ir(H){R(H)C? C(H)OAr}], have been carried out. Compounds of these types are obtained either by reaction of the unsaturated fragment [(TpMe2)Ir(C6H5)2] with o‐C6H4(OH)CH2R, or with the substituted anisoles 2,6‐Me2C6H3OMe, 2,4,6‐Me3C6H2OMe, and 4‐Br‐2,6‐Me2C6H2OMe. The reactions with the substituted anisoles require not only multiple C? H bond activation but also cleavage of the Me? OAr bond and the reversible formation of a C? C bond (as revealed by 13C labeling studies). Equilibria between the two tautomeric structures of these complexes were achieved by prolonged heating at temperatures between 100 and 140 °C, with interconversion of isomeric complexes requiring inversion of the metal configuration, as well as the expected migratory insertion and hydrogen‐elimination reactions. This proposal is supported by a detailed computational exploration of the mechanism at the quantum mechanics (QM) level in the real system. For all compounds investigated, the equilibria favor the alkylidene structure over the olefinic isomer by a factor of between approximately 1 and 25. Calculations demonstrate that the main reason for this preference is the strong Ir–carbene interactions in the carbene isomers, rather than steric destabilization of the olefinic tautomers.  相似文献   

19.
New zincocenes [ZnCp′2] ( 2 – 5 ) with substituted cyclopentadienyl ligands C5Me4H, C5Me4tBu, C5Me4SiMe2tBu and C5Me4SiMe3, respectively, have been prepared by the reaction of ZnCl2 with the appropriate Cp′‐transfer reagent. For a comparative structural study, the known [Zn(C5H4SiMe3)2] ( 1 ), has also been investigated, along with the mixed‐ring zincocenes [Zn(C5Me5)(C5Me4SiMe3)] ( 6 ) and [Zn(C5Me5)(C5H4SiMe3)] ( 7 ), the last two obtained by conproportionation of [Zn(C5Me5)2] with 5 or 1 , as appropriate. All new compounds were characterised by NMR spectroscopy, and by X‐ray methods, with the exception of 7 , which yields a side‐product ( C ) upon attempted crystallisation. Compounds 5 and 6 were also investigated by 13C CPMAS NMR spectroscopy. Zincocenes 1 and 2 have infinite chain structures with bridging Cp′ ligands, while 3 and 4 exhibit slipped‐sandwich geometries. Compounds 5 and 6 have rigid, η51(σ) structures, in which the monohapto C5Me4SiMe3 ligand is bound to zinc through the silyl‐bearing carbon atom, forming a Zn? C bond of comparable strength to the Zn? Me bond in ZnMe2. Zincocene 5 has dynamic behaviour in solution, but a rigid η51(σ) structure in the solid state, as revealed by 13C CPMAS NMR studies, whereas for 6 the different nature of the Cp′ ligands and of the ring substituents of the η1‐Cp′ group (Me and SiMe3) have permitted observation for the first time of the rigid η51 solution structure. Iminoacyl compounds of composition [Zn(η5‐C5Me4R)(η1‐C(NXyl)C5Me4R)] resulting from the reactions of some of the above zincocenes and CNXyl (Xyl=2,6‐dimethylphenylisocyanide) have also been obtained and characterised.  相似文献   

20.
The controlled base hydrolysis of 2,6‐Mes2C6H3SnCl3 ( 1 ; Mes=mesityl) provided 2,6‐Mes2C6H3Sn(OH)Cl2?H2O ( 2 ) and the trinuclear organostannonic acid trans‐[2,6‐Mes2C6H3Sn(O)OH]3 ( 3 ), respectively. In moist C6D6, 3 reversibly reacts with water to give the monomeric organostannonic acid 2,6‐Mes2C6H3Sn(OH)3 ( 3a ). The reaction of 3 with (tBu2SnO)3, Ph2PO2H, and NaH, gives rise to the multinuclear hypercoordinated organostannoxane clusters [tBu2Sn(OH)OSnR(OH)2OC(OSntBu2OH)2(O)SnR(OH)(H2O)]2 ( 5 ), [RSn(OH)2(O2PPh2)]2 ( 6 ), and Na3(RSn)4O6(OH)3 ( 7 ), respectively (R=2,6‐Mes2C6H3). The characterization of the new compounds is achieved by multinuclear NMR spectroscopy and electrospray mass spectrometry in solution and 119Sn MAS NMR spectroscopy, IR spectroscopy, and X‐ray crystallography in the solid‐state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号