首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
While the enantioselective Rauhut–Currier reaction is established with bis(enone) substrates, it is yet to be reported with less electrophilic bis(enoate) substrates. By exploiting high‐nucleophilicity N‐heterocyclic carbenes, it is possible to achieve Rauhut–Currier reactions with these substrates. The reaction is demonstrated with a range of intramolecular reactions (20 examples) and six esterification/RC reaction cascades, which all proceed with high enantioselectivity (most >93:7 er).  相似文献   

2.
The catalytic umpolung of imines remains an underdeveloped approach to reaction discovery. Herein we report an enantioselective aza‐Stetter reaction that proceeds via imine umpolung using N‐heterocyclic carbene catalysis. The reaction proceeds with high levels of enantioselectivity (all ≥96:4 er) and good generality (21 examples). Mechanistic studies are reported and are consistent with turnover‐limiting addition of the NHC to the imine.  相似文献   

3.
In contrast to well‐established asymmetric hydrogenation reactions, enantioselective protonation is an orthogonal approach for creating highly valuable methine chiral centers under redox‐neutral conditions. Reported here is the highly enantio‐ and diastereoselective hydrofluorination of enals by an asymmetric β‐protonation/α‐fluorination cascade catalyzed by N‐heterocyclic carbenes (NHCs). The two nucleophilic sites of a homoenolate intermediate, generated from enals and an NHC, are sequentially protonated and fluorinated. The results show that controlling the relative rates of protonation, fluorination, and esterification is crucial for this transformation, and can be accomplished using a dual shuttling strategy. Structurally diverse carboxylic acid derivatives with two contiguous chiral centers are prepared in a single step with excellent d.r. and ee values.  相似文献   

4.
The synthesis and characterization of original NHC ligands based on an imidazo[1,5‐a]pyridin‐3‐ylidene (IPy) scaffold functionalized with a flanking barbituric heterocycle is described as well as their use as tunable ligands for efficient gold‐catalyzed C?N, C?O, and C?C bond formations. High activity, regio‐, chemo‐, and stereoselectivities are obtained for hydroelementation and domino processes, underlining the excellent performance (TONs and TOFs) of these IPy‐based ligands in gold catalysis. The gold‐catalyzed domino reactions of 1,6‐enynes give rise to functionalized heterocycles in excellent isolated yields under mild conditions. The efficiency of the NHC gold 5Me complex is remarkable and mostly arises from a combination of steric protection and stabilization of the cationic AuI active species by ligand 1Me .  相似文献   

5.
Highly enantioselective [3+3] and [3+4] annulations of isatin‐derived enals with ethynylethylene carbonates and ethynyl benzoxazinanones are enabled by NHC/cooper cooperative catalysis, leading to a big library of spirooxindole derivatives in high structural diversity and enantioselectivity (up to 99 % ee). Both reactions represent a nicely synergistic integration of NHC and copper catalysis, in which both catalysts activate the substrates and the chiral NHC perfectly controls the stereochemistry.  相似文献   

6.
Discovered by Hawthorne in 1965, dicarbollide ions are an intriguing class of nido ‐carboranes that mimic the behavior of the cyclopentadienyl anion. Herein, we show that it is possible to directly link the dicarbollide ion to an N‐heterocyclic carbene (NHC) to form an isolable N‐dicarbollide‐substituted NHC dianion. This molecule can be accessed by the sequential double deprotonation of a mono‐nido ‐carboranyl imidazolium zwitterion. As revealed by a single‐crystal X‐ray diffraction study, the first deprotonation leads to a monoanionic dicarbollide ion that adopts a bis(dicarbollide) structure in the solid state. Subsequent deprotonation of this monoanion leads to the first N‐dicarbollide NHC, which was fully characterized by multinuclear NMR spectroscopy as well as single‐crystal X‐ray diffraction.  相似文献   

7.
The merging of photoredox catalysis and N‐heterocyclic carbene (NHC) catalysis for γ‐ and ?‐alkylation of enals with alkyl radicals was developed. The alkylation reaction of γ‐oxidized enals with alkyl halides worked well for the synthesis γ‐multisubstituted‐α,β‐unsaturated esters, including those with challenging vicinal all‐carbon quaternary centers. The synthesis of ?‐multisubstituted‐α,β‐γ,δ‐diunsaturated esters by an unprecedented NHC‐catalyzed ?‐functionalization was also established.  相似文献   

8.
9.
10.
11.
12.
The reaction of SIPr, [1,3‐bis(2,6‐diisopropylphenyl)‐imidazolin‐2‐ylidene] ( 1 ), with C6F6 led to the formation of an unprecedented mesoionic compound ( 2 ). The formation of 2 is made accessible by deprotonation of the SIPr backbone with simultaneous elimination of HF. The C?F bond para to the imidazolium ring in 2 is only of 1.258(4) Å, which is the one of the shortest structurally authenticated C?F bonds known to date. The liberation of HF during the reaction is unequivocally proved by the addition of one more equivalent of SIPr, which leads to the imidazolium salt with the HF2? anion. To functionalize 2 , the latter reacted with B(C6F5)3 to give an unusual donor–acceptor compound, where the fluoride atom from the C6F5 moiety coordinates to B(C6F5)3 and the carbanion moiety remains unaffected. Such coordination susceptibility of the fluoride atom of a nonmetallic system to a main‐group Lewis acid (Fnon‐metal→BR3) is quite unprecedented.  相似文献   

13.
Methylene‐linked bis(N,N′‐di‐tert‐butylimidazol‐2‐ylidene) 1 reacted with diethylzinc to give dinuclear zinc ethyl compound 2 , which contains a formally anionic bis(carbene) ligand as a result of deprotonation of the methylene bridge. The reaction of 2 with PhSiH3 gave the phenylsilyl compound 3 . The zinc hydride 4 was obtained by the reaction of 2 with LiAlH4 or Ph3SiOH followed by treatment with PhSiH3. X‐ray diffraction studies show that compounds 2 , 3 , and 4 all have a similar dimeric structure with D2h symmetry. The reaction of hydride 4 with carbon dioxide and N,N′‐diisopropylcarbodiimide gave formato ( 5 ) and formamidinato ( 7 ) derivatives as a result of the insertion of the heterocumulene into both Zn? H bonds. Reaction with Ph2CO gave the diphenylmethoxy compound 6 . Hydride 4 shows catalytic activity in the hydrosilylation of 1,1‐diphenylethylene and methanolysis of silanes.  相似文献   

14.
15.
16.
Despite recent progress in the catalytic transformation of inert phenol derivatives as alternatives to aryl halides and triflates, attempts at the cross‐coupling of inert phenol derivatives with the C−H bonds of arenes have met with limited success. Herein, we report the rhodium‐catalyzed cross‐coupling of aryl carbamates with arenes bearing a convertible directing group. The key to success is the use of an in situ generated rhodium bis(N‐heterocyclic carbene) species as the catalyst, which can promote activation of the inert C(sp2)−O bond in aryl carbamates.  相似文献   

17.
The reported metal–organic framework (MOF) catalyst realizes CO2 to methanol transformation under ambient conditions. The MOF is one rare example containing metal‐free N‐heterocyclic carbene (NHC) moieties, which are installed using an in situ generation strategy involving the incorporation of an imidazolium bromide based linker into the MOF by postsynthetic ligand exchange. Importantly, the resultant NHC‐functionalized MOF is the first catalyst capable of performing quantitative hydrogen transfer from silanes to CO2, thus achieving quantitative (>99 %) methanol yield. Density‐functional theory calculations indicate the high catalytic activity of the NHC sites in MOFs are attributed to the decreased reaction barrier of a reaction route involving the formation of an NHC‐silane adduct. In addition, the MOF‐immobilized NHC catalyst shows enhanced stability for up to eight cycles without base activation, as well as high selectivity towards the desired silyl methoxide product.  相似文献   

18.
19.
The coordination of N‐heterocyclic carbene (NHC) ligands to the surface of 3.7 nm palladium nanoparticles (PdNPs) can be unambiguously established by observation of Knight shift (KS) in the 13C resonance of the carbenic carbon. In order to validate this coordination, PdNPs with sizes ranging from 1.3 to 4.8 nm were prepared by thermal decomposition or reduction with CO of a dimethyl NHC PdII complex. NMR studies after 13CO adsorption established that the KS shifts the 13C resonances of the chemisorbed molecules several hundreds of ppm to high frequencies only when the particle exceeds a critical size of around 2 nm. Finally, the resonance of a carbenic carbon is reported to be Knight‐shifted to 600 ppm for 13C‐labelled NHCs bound to PdNPs of 3.7 nm. The observation of these very broad KS resonances was facilitated by using Car–Purcell–Meiboom–Gill (CPMG) echo train acquisition NMR experiments.  相似文献   

20.
Metal N‐heterocyclic carbene (NHC) complexes are a promising class of anti‐cancer agents displaying potent in vitro and in vivo activities. Taking a multi‐faceted approach employing two clickable photoaffinity probes, herein we report the identification of multiple molecular targets for anti‐cancer active pincer gold(III) NHC complexes. These complexes display potent and selective cytotoxicity against cultured cancer cells and in vivo anti‐tumor activities in mice bearing xenografts of human cervical and lung cancers. Our experiments revealed the specific engagement of the gold(III) complexes with multiple cellular targets, including HSP60, vimentin, nucleophosmin, and YB‐1, accompanied by expected downstream mechanisms of action. Additionally, PtII and PdII analogues can also bind the cellular proteins targeted by the gold(III) complexes, uncovering a distinct pincer cyclometalated metal–NHC scaffold in the design of anti‐cancer metal medicines with multiple molecular targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号