首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An environmentally friendly electrocatalytic protocol has been developed for dehydrogenative C−H/S−H cross‐coupling. This method enabled C−S bond formation under catalyst‐ and oxidant‐free conditions. Under undivided electrolysis conditions, various aryl/heteroaryl thiols and electron‐rich arenes afforded the C−S bond‐formation products in 24–99 % yield. A preliminary mechanistic study indicated that the generation of aryl radical cation intermediates is key to the success of this transformation.  相似文献   

2.
Six‐membered cyclic α‐aminonitrile has been prepared from anodic cyanation of N‐benzylpiperidine. Good yields of α‐aminonitriles could be obtained through potentiostatic electrolysis under different conditions. The results also explain why high yield α‐aminonitriles could not be obtained under constant current electrolysis.  相似文献   

3.
《Electroanalysis》2004,16(18):1528-1535
In the proposed method As(III) is determined with a wall‐jet flow cell by means of potentiostatic co‐deposition of Au(III) and As(III) at a glassy‐carbon electrode and subsequent chemical stripping with Au(III). Factors affecting sensitivity and precision including acidity, Au(III) concentration, electrodeposition potential and flow rate were optimized. Optimum determination of As(III) in solutions containing 160 mg L?1 and 1.2 M hydrochloric acid was accomplished with an electrolysis potential of ?0.1 V (vs. Ag/AgCl) and a flow rate of 0.59 mL min?1. Different linear concentration ranges were achieved under these conditions with good precision and relative standard deviations between 6–9%. The detection limit obtained after 120 s of electrolysis was 0.55 μg L?1.  相似文献   

4.
Reported herein is an unprecedented synthesis of C3‐fluorinated oxindoles through cross‐dehydrogenative coupling of C(sp3)‐H and C(sp2)‐H bonds from malonate amides. Under the unique and mild electrochemical conditions, the requisite oxidant and base are generated in a continuous fashion, allowing the formation of the base‐ and heat‐sensitive 3‐fluorooxindoles in high efficiency with broad substrate scope. The synthetic usefulness of the electrochemical method is further highlighted by its easy scalability and the diverse transformations of the electrolysis product.  相似文献   

5.
The liquid structures of deep eutectic solvents (DESs) based on hydrated metal halides and their application as electrolytes have been widely studied. However, little attention has been paid to the direct use of this type of DES in the preparation of micro‐/nanomaterials. Herein, an FeCl3 ? 6 H2O/urea DES was used in the one‐step synthesis of NiFe‐LDH_D with a nanoflower morphology. In alkaline media, this catalyst promoted excellent electrocatalytic activity for the oxidation of urea at potential of 1.32 V (vs. RHE) and for the oxygen‐evolution reaction at a potential of 1.39 V to achieve a current density of 10 mA cm?2. These results were superior to the results with NiFe‐LDH/NF that was obtained from an aqueous solution of FeCl3, as well as most of the previously reported transition‐metal catalysts. Furthermore, NiFe‐LDH_D/NF could be readily implemented as both a cathode and an anode for the electrolysis of urea and water splitting. The use of hydrated‐metal‐halide‐based DESs for the preparation of LDH catalysts through a dipping‐redox strategy should both enrich the research of DESs and offer guidance for the rational surface engineering of catalysts for the electrolysis of urea and overall water splitting with high performance.  相似文献   

6.
A one‐step etching method was developed to fabricate glass free‐flow electrophoresis microchips with a rectangle separation microchamber (42 mm‐long, 23 mm‐wide and 28 μm‐deep), in which two glass bridges (0.5 mm‐wide) were made simultaneously to prevent bubbles formed by electrolysis near the Pt electrode from entering the separation chamber. By microchip free‐flow zone electrophoresis, with 200 V voltage applied, the baseline separation of three FITC labeled proteins, ribonuclease B, myoglobin and β‐lactoglobulin, was achieved, with resolution over 1.78. Furthermore, with 2.5 mM Na2SO4 added into the electrode buffer to form higher electrical field strength across separation microchamber than electrode compartments, similar resolution of samples was achieved with the applied voltage decreased to 75 V, which could obviously decrease Joule heat during continuous separation. All these results demonstrate that the free‐flow electrophoresis microchip fabricated by one‐step etching method is suitable for the continuous separation of proteins, which might become an effective pre‐fractionation method for proteome study.  相似文献   

7.
The direct oxidative cross‐coupling of phenols is a very challenging transformation, as homo‐coupling is usually strongly preferred. Electrochemical methods circumvent the use of oxidizing reagents or metal catalysts and are therefore highly attractive. Employing electrolytes with a high capacity for hydrogen bonding, such as methanol with formic acid or 1,1,1,3,3,3‐hexafluoro‐2‐propanol, a direct electrolysis in an undivided cell provides mixed 2,2′‐biphenols with high selectivity. This mild method tolerates a variety of moieties, for example, tert‐butyl groups, which are not compatible with other strong electrophilic media but vital for later catalytic applications of the formed products.  相似文献   

8.
A new method was developed for the selective gram‐scale synthesis of 2,5‐diformylfuran (DFF), which is an important chemical with a high application potential, via oxidation of biomass‐derived 5‐hydroxylmethylfurfural (HMF) catalyzed by 4‐acetylamino‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl (4‐AcNH‐TEMPO) in a two‐phase system consisting of a methylene chloride and aqueous solution containing sodium hydrogen carbonate and potassium iodide. The key feature of this method is the generation of the I2 (co‐)oxidant by anodic oxidation of iodide anions during pulse electrolysis. In addition, the electrolyte can be successfully recycled five times while maintaining a 62–65 % yield of DFF. This novel method provides a sustainable pathway for waste‐free production of DFF without the use of metal catalysts and expensive oxidants. An advantage of electrooxidation is utilized in the preparation of demanding chemical.  相似文献   

9.
A metal‐free convergent paired electrolysis strategy to synthesize benzylic amines through direct arylation of tertiary amines and benzonitrile derivatives at room temperature has been developed. This TEMPO‐mediated electrocatalytic reaction makes full use of both anodic oxidation and cathodic reduction without metals or stoichiometric oxidants, thus showing great potential and advantages for practical synthesis. This convergent paired electrolysis method provides a straightforward and powerful means to activate C?H bonds and realize cross‐coupling with cathodically generated species.  相似文献   

10.
Low‐temperature electricity‐driven water splitting is an established technology for hydrogen production. However, the two main types, namely proton exchange membrane (PEM) and liquid alkaline electrolysis, have limitations. For instance, PEM electrolysis requires a high amount of costly platinum‐group‐metal (PGM) catalysts, and liquid alkaline electrolysis is not well suited for intermittent operation. Herein we report a highly efficient alkaline polymer electrolysis design, which uses a membrane‐electrode assembly (MEA) based on low‐cost transition‐metal catalysts and an anion exchange membrane (AEM). This system exhibited similar performance to the one achievable with PGM catalysts. Moreover, it is very suitable for intermittent power operation, durable, and able to efficiently operate at differential pressure up to 3 MPa. This system combines the benefits of PEM and liquid alkaline technologies allowing the scalable production of low‐cost hydrogen from renewable sources.  相似文献   

11.
In the search for optimized cathode materials for high‐temperature electrolysis, mixed conducting oxides are highly promising candidates. This study deals with fundamentally novel insights into the relation between surface chemistry and electrocatalytic activity of lanthanum ferrite based electrolysis cathodes. For this means, near‐ambient‐pressure X‐ray photoelectron spectroscopy (NAP‐XPS) and impedance spectroscopy experiments were performed simultaneously on electrochemically polarized La0.6Sr0.4FeO3?δ (LSF) thin film electrodes. Under cathodic polarization the formation of Fe0 on the LSF surface could be observed, which was accompanied by a strong improvement of the electrochemical water splitting activity of the electrodes. This correlation suggests a fundamentally different water splitting mechanism in presence of the metallic iron species and may open novel paths in the search for electrodes with increased water splitting activity.  相似文献   

12.
The anodic C?C cross‐coupling reaction is a versatile synthetic approach to symmetric and non‐symmetric biphenols and arylated phenols. We herein present a metal‐free electrosynthetic method that provides access to symmetric and non‐symmetric meta‐terphenyl‐2,2′′‐diols in good yields and high selectivity. Symmetric derivatives can be obtained by direct electrolysis in an undivided cell. The synthesis of non‐symmetric meta‐terphenyl‐2,2′′‐diols required two electrochemical steps. The reactions are easy to conduct and scalable. The method also features a broad substrate scope, and a large variety of functional groups are tolerated. The target molecules may serve as [OCO]3? pincer ligands.  相似文献   

13.
The objective of this work is to elucidate the electrochemical and corresponding optical properties of 8‐hydroxypyrene‐1,3,6‐trisulfonic acid (HPTS), using optically transparent electrodes, thereby deducing its usefulness as a model compound for spectroelectrochemical sensor development. Three pH levels were tested to determine optimal solution conditions for optical signal modulation. The electrolysis of HPTS follows an ECE mechanism, presumably resulting in the formation of a dihydroxy/dione derivative, and modulates the optical response at 405 and 460 nm wavelengths for pH 5 solutions. HPTS is a good candidate for spectroelectrochemical sensor research.  相似文献   

14.
The electroactive copolymer of poly(acryloyl chloride) (PAC) and polypyrrole (PPy) can be synthesized by electrochemical polymerization using a polymer precursor which contains a pyrrole moiety in its side chain. Poly(acryloyl pyrrole) (PAP) was synthesized chemically with acryloyl chloride and potassium pyrrole salt and characterized using FT‐IR and 1H‐NMR spectroscopy. PAP dissolved in dimethyl formamide (DMF), was spin‐coated on a platinum electrode and polymerized electrochemically in the electrolytic mixture solution consisting of acetonitrile, 0.1 M pyrrole, and 0.1 M lithium perchlorate. Constant potential electrolysis showed that pyrrole groups in the precursor were oxidized to form PPy, that is, they acted as grafting centers at which the PPy grew. Scanning electron microscopy (SEM) results and conductivity measurements supported the formation of the graft copolymer. The morphological feature of PAC‐g‐PPy copolymer films showed homogeneous structure, but that of PAC/PPy composite films showed irregular structure. The maximum conductivity of the final products was about 1 S/cm. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
It is generally believed that CO2 electroreduction to multi‐carbon products such as ethanol or ethylene may be catalyzed with significant yield only on metallic copper surfaces, implying large ensembles of copper atoms. Here, we report on an inexpensive Cu‐N‐C material prepared via a simple pyrolytic route that exclusively feature single copper atoms with a CuN4 coordination environment, atomically dispersed in a nitrogen‐doped conductive carbon matrix. This material achieves aqueous CO2 electroreduction to ethanol at a Faradaic yield of 55 % under optimized conditions (electrolyte: 0.1 m CsHCO3, potential: ?1.2 V vs. RHE and gas‐phase recycling set up), as well as CO electroreduction to C2‐products (ethanol and ethylene) with a Faradaic yield of 80 %. During electrolysis the isolated sites transiently convert into metallic copper nanoparticles, as shown by operando XAS analysis, which are likely to be the catalytically active species. Remarkably, this process is reversible and the initial material is recovered intact after electrolysis.  相似文献   

16.
本文报道了6-巯基嘌呤存在时在水相中通过阳极氧化邻苯二酚来电化学合成5-(嘌呤-6-巯基)邻苯二酚衍生物。循环伏安法和控制电位电解的结果表明该类化合物的形成为EC过程,即邻苯二酚衍生物原料先是被电化学氧化成对应的邻苯醌衍生物,该醌非常活泼,进一步与6-巯基嘌呤发生迈克尔加成反应,原位转化生成化合物3a-3d。该工作进一步证明了水相中邻苯醌衍生物的电化学合成与原位转化是合成邻苯二酚衍生物的重要方法。  相似文献   

17.
Efficient, earth‐abundant, and acid‐stable catalysts for the oxygen evolution reaction (OER) are missing pieces for the production of hydrogen via water electrolysis. Here, we report how the limitations on the stability of 3d‐metal materials can be overcome by the spectroscopic identification of stable potential windows in which the OER can be catalyzed efficiently while simultaneously suppressing deactivation pathways. We demonstrate the benefits of this approach using gamma manganese oxide (γ‐MnO2), which shows no signs of deactivation even after 8000 h of electrolysis at a pH of 2. This stability is vastly superior to existing acid‐stable 3d‐metal OER catalysts, but cannot be realized if there is a deviation as small as 50‐mV from the stable potential window. A stable voltage efficiency of over 70 % in a polymer–electrolyte membrane (PEM) electrolyzer further verifies the availability of this approach and showcases how materials previously perceived to be unstable may have potential application for water electrolysis in an acidic environment.  相似文献   

18.
The synthesis and reactivity of mono‐ and bis‐S‐xanthyl NHC‐boranes is reported. The new NHC‐boranes are prepared through nucleophilic exchange at boron from either mono‐ or bis‐triflyl NHC‐boranes, themselves obtained by protolysis of the NHC‐BH3 starting compounds. The B?H bond of the S‐xanthyl NHC‐boranes can be cleaved both homolytically and heterolytically, albeit the latter is more synthetically useful. The S‐xanthyl NHC‐boranes can reduce both aldehydes and imines. The B?S bond can also be cleaved homolytically. Under UV irradiation, the S‐xanthyl NHC‐boranes generate NHC‐boryl radicals that can initiate radical polymerizations of acrylates.  相似文献   

19.
《Electroanalysis》2003,15(8):689-694
The reaction of chlorine and N,N‐diethyl‐p‐phenylenediamine has been studied as a means of generating an analytical voltammetric signal of much improved sensitivity and selectivity for the detection of the former than is possible via direct electrolysis. A reaction mechanism is suggested whereby the chlorine attacks the primary amine of DEPD to form the N‐chlorinated product that shows a much enhanced signal under conditions of square‐wave voltammetry than does chlorine itself. The analytical parameters were found to vary with concentration of DEPD and a linear range from 17 to 495 μM was achievable with a corresponding limit of detection of 6.8 μM  相似文献   

20.
A series of 4‐aryl‐5‐phenylimino‐3‐S‐(hepta‐O‐acetyl lactosyl)‐1,2,4‐thiadiazolines have been synthesized by the interaction of S‐(hepta‐O‐acetyl lactosyl)‐1‐arylisothiocarbamides and S‐chloro‐N‐phenyl isothiocarbamoyl chloride. The title compounds were characterized on the basis of elemental analysis and IR, NMR, mass spectral studies. The title compounds exhibited comparable antimicrobial activities against pathogens such as E. coli, S. aureus, P. vulgaris, S. typhi, A. niger, and Candida guilliermondii. © 2007 Wiley Periodicals, Inc. Heteroatom Chem 18:390–392, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20310  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号