首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Described is a systematic comparison of factors impacting the relative rates and selectivities of C(sp3)?C and C(sp3)?O bond‐forming reactions at high‐valent Ni as a function of oxidation state. Two Ni complexes are compared: a cationic octahedral NiIV complex ligated by tris(pyrazolyl)borate and a cationic octahedral NiIII complex ligated by tris(pyrazolyl)methane. Key features of reactivity/selectivity are revealed: 1) C(sp3)?C(sp2) bond‐forming reductive elimination occurs from both centers, but the NiIII complex reacts up to 300‐fold faster than the NiIV, depending on the reaction conditions. The relative reactivity is proposed to derive from ligand dissociation kinetics, which vary as a function of oxidation state and the presence/absence of visible light. 2) Upon the addition of acetate (AcO?), the NiIV complex exclusively undergoes C(sp3)?OAc bond formation, while the NiIII analogue forms the C(sp3)?C(sp2) coupled product selectively. This difference is rationalized based on the electrophilicity of the respective M?C(sp3) bonds, and thus their relative reactivity towards outer‐sphere SN2‐type bond‐forming reactions.  相似文献   

2.
A borane B(C6F5)3‐catalyzed metathesis reaction between the Si?C bond in the cyclic (alkyl)(amino)germylene (CAAGe) 1 and the Si?H bond in a silane (R3SiH; 2 ) is reported. Mechanistic studies propose that the initial step of the reaction involves Si?H bond activation to furnish an ionic species [ 1 ‐SiR3]+[HB(C6F5)3]?, from which [Me3Si]+[HB(C6F5)3]? and an azagermole intermediate are generated. The former yields Me3SiH concomitant with the regeneration of B(C6F5)3 whereas the latter undergoes isomerization to afford CAAGes bearing various silyl groups on the carbon atom next to the germylene center. This strategy allows the straightforward synthesis of eight new CAAGes starting from 1 .  相似文献   

3.
4.
Described is a robust platform for the synthesis of a large diversity of novel functional CO2‐sourced polymers by exploiting the regiocontrolled ring‐opening of α‐alkylidene carbonates by various nucleophiles. The reactivity of α‐alkylidene carbonates is dictated by the exocyclic olefinic group. The polyaddition of CO2‐sourced bis(α‐alkylidene carbonate)s (bis‐αCCs) with primary and secondary diamines provides novel regioregular functional poly(urethane)s. The reactivity of bis‐αCCs is also exploited for producing new poly(β‐oxo‐carbonate)s by organocatalyzed polyaddition with a diol. This synthesis platform provides new functional variants of world‐class leading polymer families (polyurethanes, polycarbonates) and valorizes CO2 as a chemical feedstock.  相似文献   

5.
6.
7.
8.
9.
Gold(III) carboxylate species, stabilized by a κ3‐(N^C^C) ligand template, are presented herein. A η1‐AuIII‐C(O)‐OH species has been characterized under cryogenic conditions as a result of the nucleophilic attack of an ammonium hydroxide onto a dinuclear μ‐CO2‐κ3‐(N^C^C)AuIII precursor. Thermal decomposition for these species proceeds by an unusual decarbonylation process, in contrast to typical decarboxylation pathways observed in related metallocarboxylic acids.  相似文献   

10.
In situ oxidation of the GaI compound NacNacGa by either N2O or pyridine oxide results in the generation of a labile monomeric oxide, NacNacGa(O), which can easily cleave the C?H bonds of aliphatic and aromatic substrates featuring good donor sites. The products of this reaction are gallium organyl hydroxides. DFT calculations show that these reactions start with the formation of NacNac‐Ga(O)(L) adducts, the oxo ligand of which can easily abstract protons from nearby C?H bonds, even for sp2‐hybridized carbon centers. Aliphatic amines do not enter this reaction for kinetic reasons, presumably because of the unfavorable sterics.  相似文献   

11.
12.
13.
Reported herein is the isolation and characterization, for the first time, of a σ‐gold allenyl complex as an intermediate in gold catalysis. This intermediate was captured during the study of a novel gold(I)‐catalyzed propargylation of carbonyl compounds with propargylsilanes. Notably, the gold‐catalyzed propargylation reaction, which proceeds with aldehydes and ketones, can be driven to the formation of either homopropargyl silyl ethers or the in situ synthesis of corresponding 2‐silyl‐4,5‐dihydrofurans.  相似文献   

14.
15.
16.
17.
18.
19.
The diboration of the C≡N bond in organic nitriles, and the N=N bond in azobenzene and pyridazine, by the highly Lewis‐acidic tetra(o‐tolyl)diborane(4) are reported. In the reactions with nitriles, azobenzene, and pyridazine, the addition of diborane(4) to the C≡N and N=N bonds was observed. Conversely, the N=N bond in phthalazine was cleaved by an addition/rearomatization sequence.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号