首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The synthesis of an N‐heterocyclic silylene‐stabilized digermanium(0) complex is described. The reaction of the amidinate‐stabilized silicon(II) amide [LSiN(SiMe3)2] ( 1 ; L=PhC(NtBu)2) with GeCl2?dioxane in toluene afforded the SiII–GeII adduct [L{(Me3Si)2N}Si→GeCl2] ( 2 ). Reaction of the adduct with two equivalents of KC8 in toluene at room temperature afforded the N‐heterocyclic carbene silylene‐stabilized digermanium(0) complex [L{(Me3Si)2N}Si→ Ge?Ge←Si{N(SiMe3)2}L] ( 3 ). X‐ray crystallography and theoretical studies show conclusively that the N‐heterocyclic silylenes stabilize the singlet digermanium(0) moiety by a weak synergic donor–acceptor interaction.  相似文献   

2.
An autoionization of germanium dichloride/dioxane complex with an imino‐N‐heterocyclic carbene ligand ( L ) afforded a novel germyliumylidene ion, [( L )GeCl]+[GeCl3]?, which was fully characterized. Reduction of the germyliumylidene ion with potassium graphite produced a cyclic species [( L )Ge], which can be viewed as both a Ge0 species and a mesoionic germylene. X‐ray diffraction analysis and computational studies revealed one of the lone pairs on the Ge atom is involved in the π system on the GeC2N2 five‐membered ring. It was also confirmed that the nucleophilic behavior of [( L )Ge] as a two lone‐pair donor.  相似文献   

3.
A metal‐containing N‐heterocyclic germylene based on a N‐mesityl (Mes)‐substituted oxalamidine framework is reported. The precursor (MesN=)2C–C(–N(H)Mes)2 ( 1 H2) was converted into its rhodium complex [Rh(κ2N‐ 1 H2)(cod)][OTf] ( 2 ) (cod = 1,5‐cyclooctadiene; OTf = triflate) in 62 % isolated yield. Subsequent reaction of 2 with Ge{N(SiMe3)2}2 gave the crystalline N‐heterocyclic germylene [Rh(cod)(μ‐ 1 )Ge][OTf] ( 3 ) in 50 % yield. The compounds under study were fully characterized by various methods, also including X‐ray crystallographic studies on single crystals of 2 and 3 . Density functional theory (DFT) calculations revealed that π conjugation in the bridging oxalamidine framework is increased and n(N)–p(Ge) π bonding is decreased upon κ2N metal coordination; a further weakening of the Ge–N bond occurs through triflate coordination to the GeII atom. Nevertheless, preliminary coordination studies revealed that 3 behaves as 2‐electron (L ‐type) germylene donor ligand. Treatment of 3 with [Ir(cod)Cl]2 furnished the heterobimetallic complex [Rh(cod)(μ‐ 1 )Ge‐Ir(cod)Cl][OTf] ( 4 ), as evidenced by NMR spectroscopic investigations and DFT calculations.  相似文献   

4.
The consequences of extremely high steric loading have been probed for late transition metal complexes featuring the expanded ring N‐heterocyclic carbene 6‐Dipp. The reluctance of this ligand to form 2:1 complexes with d‐block metals (rationalised on the basis of its percentage buried volume, % Vbur, of 50.8 %) leads to C?H and C?N bond activation processes driven by attack at the backbone β‐CH2 unit. In the presence of IrI (or indeed H+) the net result is the formation of an allyl formamidine fragment, while AuI brings about an additional ring (re‐)closure step via nucleophilic attack at the coordinated alkene. The net transformation of 6‐Dipp in the presence of [(6‐Dipp)Au]+ represents to our knowledge the first example of backbone C?H activation of a saturated N‐heterocyclic carbene, proceeding in this case via a mechanism which involves free carbene in addition to the AuI centre.  相似文献   

5.
By means of a combined experimental and theoretical approach, the electronic features and chemical behavior of metalla‐N‐heterocyclic carbenes (MNHCs, N‐heterocyclic carbenes containing a metal atom within the heterocyclic skeleton) have been established and compared with those of classical NHCs. MNHCs are strongly basic (proton affinity and pKa values around 290 kcal mol?1 and 36, respectively) with a narrow singlet–triplet gap (around 23 kcal mol?1). MNHCs can be generated from the corresponding metalla‐imidazolium salts and trapped by addition of transition‐metal complexes affording the corresponding heterodimetallic dicarbene derivatives, which can serve as carbene transfer agents.  相似文献   

6.
《化学:亚洲杂志》2018,13(19):2923-2933
A family of novel imine‐N‐heterocyclic carbene ruthenium(II) complexes of the general formula [(η6p‐cymene)Ru(C^N)Cl]PF6 (where C^N is an imine‐N‐heterocyclic carbene chelating ligand with varying substituents) have been prepared and characterized. In this imine‐N‐heterocyclic carbene chelating ligand framework, there are three potential sites that can be modified, which distinguishes this class of ligand and provides a body of flexibilities and opportunities to tune the cytotoxicity of these ruthenium(II) complexes. The influence of substituent effects of three tunable domains on the anticancer activity and catalytic ability in converting coenzyme NADH to NAD+ is investigated. This family of complexes displays an exceedingly distinct anticancer activity against A549 cancer cells, despite their close structural similarity. Complex 9 shows the highest anticancer activity in this series against A549 cancer cells (IC50=14.36 μm ), with an approximately 1.5‐fold better activity than the clinical platinum drug cisplatin (IC50=21.30 μm ) in A549 cancer cells. Mechanistic studies reveal that complex 9 mediates cell death mainly through cell stress, including cell cycle arrest, inducing apoptosis, increasing intracellular reactive oxygen species (ROS) levels, and depolarization of the mitochondrial membrane potential (MMP). Furthermore, lysosomal damage is also detected by confocal microscopy.  相似文献   

7.
The N‐heterocyclic plumbylene [Fe{(η5‐C5H4)NSiMe3}2Pb:] is in equilibrium with an unprecedented dimer in solution, whose formation involves the cleavage of a strong C?H bond and concomitant formation of a Pb?C and an N?H bond. According to a mechanistic DFT assessment, dimer formation does not involve direct PbII insertion into a cyclopentadienyl C?H bond, but is best described as an electrophilic substitution. The bulkier plumbylene [Fe{(η5‐C5H4)NSitBuMe2}2Pb:] shows no dimerization, but compensates its electrophilicity by the formation of an intramolecular Fe?Pb bond.  相似文献   

8.
A series of group 13 complexes of the general type [{(WCA‐IDipp)EX3}Li(solv)] (E=B, Al, Ga, In; X=Cl, Br) that bear an anionic N‐heterocyclic carbene ligand with a weakly coordinating borate moiety (WCA‐IDipp, WCA=B(C6F5)3 and IDipp=1,3‐bis(2,6‐diisopropylphenyl)imidazolin‐2‐ylidene) were prepared by the reaction of the respective group 13 trihalides (EX3) with the lithium salt [(WCA‐IDipp)Li ? toluene]. The molecular structures of the BBr3, AlCl3, AlBr3, GaCl3 and InCl3 adducts were established by X‐ray diffraction analyses, revealing the formation of coordination polymers linked by halide‐lithium interactions, except for the indium derivative, which consists of isolated [Li(THF)4]+ and [(WCA‐IDipp)InCl3]? ions in the solid state.  相似文献   

9.
The N‐heterocyclic carbene–phosphinidene adduct IPr?PSiMe3 is introduced as a synthon for the preparation of terminal carbene–phosphinidyne transition metal complexes of the type [(IPr?P)MLn] (MLn=(η6‐p‐cymene)RuCl) and (η5‐C5Me5)RhCl). Their spectroscopic and structural characteristics, namely low‐field 31P NMR chemical shifts and short metal–phosphorus bonds, show their similarity with arylphosphinidene complexes. The formally mononegative IPr?P ligand is also capable of bridging two or three metal atoms as demonstrated by the preparation of bi‐ and trimetallic RuAu, RhAu, Rh2, and Rh2Au complexes.  相似文献   

10.
Two classes of pincer‐type PtII complexes containing tridentate N‐donor ligands ( 1 – 8 ) or C‐deprotonated N^C^N ligands derived from 1,3‐di(2‐pyridyl)benzene ( 10 – 13 ) and auxiliary N‐heterocyclic carbene (NHC) ligand were synthesized. [Pt(trpy)(NHC)]2+ complexes 1 – 5 display green phosphorescence in CH2Cl2 (Φ: 1.1–5.3 %; τ: 0.3–1.0 μs) at room temperature. Moderate‐to‐intense emissions are observed for 1 – 7 in glassy solutions at 77 K and for 1 – 6 in the solid state. The [Pt(N^C^N)(NHC)]+ complexes 10 – 13 display strong green phosphorescence with quantum yields up to 65 % in CHCl3. The reactions of 1 with a wide variety of anions were examined in various solvents. The tridentate N‐donor ligand of 1 undergoes displacement reaction with CN? in protic solvents. Similar displacement of the N^C^N ligand by CN? has been observed for 10 , leading to a luminescence “switch‐off” response. The water‐soluble 7 containing anthracenyl‐functionalized NHC ligand acts as a light “switch‐on” sensor for the detection of CN? ion with high selectivity. The in vitro cytotoxicity of the PtII complexes towards HeLa cells has been evaluated. Complex 12 showed high cytotoxicity with IC50 value of 0.46 μM , whereas 1 – 4 and 6 – 8 are less cytotoxic. The cellular localization of the strongly luminescent complex 12 traced by using emission microscopy revealed that it mainly localizes in the cytoplasmic structures rather than in the nucleus. This complex can induce mitochondria dysfunction and subsequent cell death.  相似文献   

11.
A series of six‐ and seven‐membered expanded‐ring N‐heterocyclic carbene (er‐NHC) gold(I) complexes has been synthesized using different synthetic approaches. Complexes with weakly coordinating anions [(er‐NHC)AuX] (X?=BF4?, NTf2?, OTf?) were generated in solution. According to their 13C NMR spectra, the ionic character of the complexes increases in the order X?=Cl?<NTf2?<OTf?<BF4?. Additional factors for stabilization of the cationic complexes are expansion of the NHC ring and the attachment of bulky substituents at the nitrogen atoms. These er‐NHCs are bulkier ligands and stronger electron donors than conventional NHCs as well as phosphines and sulfides and provide more stabilization of [(L)Au+] cations. A comparative study has been carried out of the catalytic activities of five‐, six‐, and seven‐membered carbene complexes [(NHC)AuX], [(Ph3P)AuX], [(Me2S)AuX], and inorganic compounds of gold in model reactions of indole and benzofuran synthesis. It was found that increased ionic character of the complexes was correlated with increased catalytic activity in the cyclization reactions. As a result, we developed an unprecedentedly active monoligand cationic [(THD‐Dipp)Au]BF4 (1,3‐bis(2,6‐diisopropylphenyl)‐3,4,5,6‐tetrahydrodiazepin‐2‐ylidene gold(I) tetrafluoroborate) catalyst bearing seven‐membered‐ring carbene and bulky Dipp substituents. Quantitative yields of cyclized products were attained in several minutes at room temperature at 1 mol % catalyst loadings. The experimental observations were rationalized and fully supported by DFT calculations.  相似文献   

12.
The proton‐induced Ru?C bond variation, which was previously found to be relevant in the water oxidation, has been investigated by using cyclometalated ruthenium complexes with three phenanthroline (phen) isomers. The designed complexes, [Ru(bpy)2(1,5‐phen)]+ ([ 2 ]+), [Ru(bpy)2(1,6‐phen)]+ ([ 3 ]+), and [Ru(bpy)2(1,7‐phen)]+ ([ 4 ]+) were newly synthesized and their structural and electronic properties were analyzed by various spectroscopy and theoretical protocols. Protonation of [ 4 ]+ triggered profound electronic structural change to form remote N‐heterocyclic carbene (rNHC), whereas protonation of [ 2 ]+ and [ 3 ]+ did not affect their structures. It was found that changes in the electronic structure of phen beyond classical resonance forms control the rNHC behavior. The present study provides new insights into the ligand design of related ruthenium catalysts.  相似文献   

13.
The reaction of zerovalent nickel compounds with white phosphorus (P4) is a barely explored route to binary nickel phosphide clusters. Here, we show that coordinatively and electronically unsaturated N‐heterocyclic carbene (NHC) nickel(0) complexes afford unusual cluster compounds with P1, P3, P5 and P8 units. Using [Ni(IMes)2] [IMes=1,3‐bis(2,4,6‐trimethylphenyl)imidazolin‐2‐ylidene], electron‐deficient Ni3P4 and Ni3P6 clusters have been isolated, which can be described as superhypercloso and hypercloso clusters according to the Wade–Mingos rules. Use of the bulkier NHC complexes [Ni(IPr)2] or [(IPr)Ni(η6‐toluene)] [IPr=1,3‐bis(2,6‐diisopropylphenyl)imidazolin‐2‐ylidene] affords a closo‐Ni3P8 cluster. Inverse‐sandwich complexes [(NHC)2Ni2P5] (NHC=IMes, IPr) with an aromatic cyclo‐P5? ligand were identified as additional products.  相似文献   

14.
Strategies for the synthesis of highly electrophilic AuI complexes from either hydride‐ or chloride‐containing precursors have been investigated by employing sterically encumbered Dipp‐substituted expanded‐ring NHCs (Dipp=2,6‐iPr2C6H3). Thus, complexes of the type (NHC)AuH have been synthesised (for NHC=6‐Dipp or 7‐Dipp) and shown to feature significantly more electron‐rich hydrides than those based on ancillary imidazolylidene donors. This finding is consistent with the stronger σ‐donor character of these NHCs, and allows for protonation of the hydride ligand. Such chemistry leads to the loss of dihydrogen and to the trapping of the [(NHC)Au]+ fragment within a dinuclear gold cation containing a bridging hydride. Activation of the hydride ligand in (NHC)AuH by B(C6F5)3, by contrast, generates a species (at low temperatures) featuring a [HB(C6F5)3]? fragment with spectroscopic signatures similar to the “free” borate anion. Subsequent rearrangement involves B?C bond cleavage and aryl transfer to the carbophilic metal centre. Under halide abstraction conditions utilizing Na[BArf4] (Arf=C6H3(CF3)2‐3,5), systems of the type [(NHC)AuCl] (NHC=6‐Dipp or 7‐Dipp) generate dinuclear complexes [{(NHC)Au}2(μ‐Cl)]+ that are still electrophilic enough at gold to induce aryl abstraction from the [BArf4]? counterion.  相似文献   

15.
Several metal complexes with a boron dipyrromethene (BODIPY)‐functionalized N‐heterocyclic carbene (NHC) ligand 4 were synthesized. The fluorescence in [( 4 )(SIMes)RuCl2(ind)] complex is quenched (Φ=0.003), it is weak in [( 4 )PdI2(Clpy)] (Φ=0.033), and strong in [( 4 )AuI] (Φ=0.70). The BODIPY‐tagged complexes can experience pronounced changes in the brightness of the fluorophore upon ligand‐exchange and ligand‐dissociation reactions. Complexes [( 4 )MX(1,5‐cyclooctadiene)] (M=Rh, Ir; X=Cl, I; Φ=0.008–0.016) are converted into strongly fluorescent complexes [( 4 )MX(CO)2] (Φ=0.53–0.70) upon reaction with carbon monoxide. The unquenching of the Rh and Ir complexes appears to be a consequence of the decreased electron density at Rh or Ir in the carbonyl complexes. In contrast, the substitution of an iodo ligand in [( 4 )AuI] by an electron‐rich thiolate decreases the brightness of the BODIPY fluorophore, rendering the BODIPY as a highly sensitive probe for changes in the coordination sphere of the transition metal.  相似文献   

16.
Coinage metal complexes of the N‐heterocyclic carbene–phosphinidene adduct IPr ? PPh (IPr=1,3‐bis(2,6‐diisopropylphenyl)imidazolin‐2‐ylidene) were prepared by its reaction with CuCl, AgCl, and [(Me2S)AuCl], which afforded the monometallic complexes [(IPr ? PPh)MCl] (M=Cu, Ag, Au). The reaction with two equivalents of the metal halides gave bimetallic [(IPr ? PPh)(MCl)2] (M=Cu, Au); the corresponding disilver complex could not be isolated. [(IPr ? PPh)(CuOTf)2] was prepared by reaction with copper(I) trifluoromethanesulfonate. Treatment of [(IPr ? PPh)(MCl)2] (M=Cu, Au) with Na(BArF) or AgSbF6 afforded the tetranuclear complexes [(IPr ? PPh)2M4Cl2]X2 (X=BArF or SbF6), which contain unusual eight‐membered M4Cl2P2 rings with short cuprophilic or aurophilic contacts along the chlorine‐bridged M???M axes. Complete chloride abstraction from [(IPr ? PPh)(AuCl)2] was achieved with two equivalents of AgSbF6 in the presence of tetrahydrothiophene (THT) to form [(IPr ? PPh){Au(THT)}2][SbF6]2. The cationic tetra‐ and dinuclear complexes were used as catalysts for enyne cyclization and carbene transfer reactions.  相似文献   

17.
The complex, bis[N‐6‐aminopyridyl‐N‐(1S)‐(+)‐10‐camphorsulfonylamino]palladium, Pd[(S)‐APCS]2, 1 , was prepared by reaction of 2‐[(1S)‐(+)‐10‐camphorsulfonamino]‐6‐aminopyridine with PdCl2 in THF. Complex 1 has been characterized by spectroscopic methods and its structure has been determined by X‐ray crystallography. Crystal data: space group C2, a= 16.082 (2), b = 17.104 (2), c = 13.051 (2)Å, β = 99.95 (1)°, V = 3535.9 (8) Å3, Z = 2 with final residuals R1 = 0.0491 and wR2 = 0.0944. Two independent molecules, (S,S)‐Pd[(S)‐APCS]2, 1a , and (R,R)‐Pd[(S)‐APCS]2, 1b , were found in each asymmetric unit, which exchange to each other via a series of nitrogen inversion and C‐C bond rotation. The inversion energy (ΔGc1) and the energy barrier (δGc2) were 11.5 ± 0.1 Kcal mol?1 at 246 K and 9.8 ± 0.1 Kcal mol?1 at 199 K, respectively, calculated by dynamic NMR data.  相似文献   

18.
Stable N‐heterocyclic carbene analogues of Thiele and Chichibabin hydrocarbons, [(IPr)(C6H4)(IPr)] and [(IPr)(C6H4)2(IPr)] ( 4 and 5 , respectively; IPr=C{N(2,6‐iPr2C6H3)}2CHCH), are reported. In a nickel‐catalyzed double carbenylation of 1,4‐Br2C6H4 and 4,4′‐Br2(C6H4)2 with IPr ( 1 ), [(IPr)(C6H4)(IPr)](Br)2 ( 2 ) and [(IPr)(C6H4)2(IPr)](Br)2 ( 3 ) were generated, which respectively afforded 4 and 5 as crystalline solids upon reduction with KC8. Experimental and computational studies support the semiquinoidal nature of 5 with a small singlet?triplet energy gap ΔES?T of 10.7 kcal mol?1, whereas 4 features more quinoidal character with a rather large ΔES?T of 25.6 kcal mol?1. In view of the low ΔES?T, 4 and 5 may be described as biradicaloids. Moreover, 5 has considerable (41 %) diradical character.  相似文献   

19.
Based on 1‐amino‐4‐hydroxy‐triptycene, new saturated and unsaturated triptycene‐NHC (N‐heterocyclic carbene) ligands were synthesized from glyoxal‐derived diimines. The respective carbenes were converted into metal complexes [(NHC)MX] (M=Cu, Ag, Au; X=Cl, Br) and [(NHC)MCl(cod)] (M=Rh, Ir; cod=1,5‐cyclooctadiene) in good yields. The new azolium salts and metal complexes suffer from limited solubility in common organic solvents. Consequently, the introduction of solubilizing groups (such as 2‐ethylhexyl or 1‐hexyl by O‐alkylation) is essential to render the complexes soluble. The triptycene unit infers special steric properties onto the metal complexes that enable the steric shielding of selected areas close to the metal center. Next, chiral and meso‐triptycene based N‐heterocyclic carbene ligands were prepared. The key step in the synthesis of the chiral ligand is the Buchwald–Hartwig amination of 1‐bromo‐4‐butoxy‐triptycene with (1S,2S)‐1,2‐diphenyl‐1,2‐diaminoethane, followed by cyclization to the azolinium salt with HC(OEt)3. The analogous reaction with meso‐1,2‐diphenyl‐1,2‐diaminoethane provides the respective meso‐azolinium salt. Both the chiral and meso‐azolinium salts were converted into metal complexes including [(NHC)AuCl], [(NHC)RhCl(cod)], [(NHC)IrCl(cod)], and [(NHC)PdCl(allyl)]. An in situ prepared chiral copper complex was tested in the enantioselective borylation of α,β‐unsaturated esters and found to give an excellent enantiomeric ratio (er close to 90:10).  相似文献   

20.
The NiII‐mediated tautomerization of the N‐heterocyclic hydrosilylcarbene L2Si(H)(CH2)NHC 1 , where L2=CH(C?CH2)(CMe)(NAr)2, Ar=2,6‐iPr2C6H3; NHC=3,4,5‐trimethylimidazol‐2‐yliden‐6‐yl, leads to the first N‐heterocyclic silylene (NHSi)–carbene (NHC) chelate ligand in the dibromo nickel(II) complex [L1Si:(CH2)(NHC)NiBr2] 2 (L1=CH(MeC?NAr)2). Reduction of 2 with KC8 in the presence of PMe3 as an auxiliary ligand afforded, depending on the reaction time, the N‐heterocyclic silyl–NHC bromo NiII complex [L2Si(CH2)NHCNiBr(PMe3)] 3 and the unique Ni0 complex [η2(Si‐H){L2Si(H)(CH2)NHC}Ni(PMe3)2] 4 featuring an agostic Si? H→Ni bonding interaction. When 1,2‐bis(dimethylphosphino)ethane (DMPE) was employed as an exogenous ligand, the first NHSi–NHC chelate‐ligand‐stabilized Ni0 complex [L1Si:(CH2)NHCNi(dmpe)] 5 could be isolated. Moreover, the dicarbonyl Ni0 complex 6 , [L1Si:(CH2)NHCNi(CO)2], is easily accessible by the reduction of 2 with K(BHEt3) under a CO atmosphere. The complexes were spectroscopically and structurally characterized. Furthermore, complex 2 can serve as an efficient precatalyst for Kumada–Corriu‐type cross‐coupling reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号