首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyclohexane‐1,3,5‐tricarbonitrile reached equilibrium having 1,3‐cis‐1,5‐cis and 1,3‐cis‐1,5‐trans isomers in a ratio of 3:7. The cis, cis‐isomer preferred the conformation with three equatorial cyano groups, where as the cis, trans‐isomer displayed two cyano groups on equatorial positions and another cyano group on axial position. Condensation of cis, cis‐cyclohexane‐1,3,5‐tricarbonitrile with L‐(S)‐valinol by the catalysis of ZnCl2 in refluxing 1,2‐dichlorobenzene afforded two isomeric cyclohexane‐1,3,5‐trioxazolines in favor of the 1,3‐cis‐1,5‐trans isomer. Metalation of cis, cis‐cyclohexane‐1,3,5‐tricarbonitrile, followed by alkylations with dimethyl sulfate, benzyl bromide or allyl bromide, gave the cor responding trialkylation products with predominance of 1,3‐cis‐1,5‐trans isomers. The cis, trans‐isomer showed two cyano groups on axial positions and another cyano group on equatorial position, where as the cis, cis‐isomer exhibited three axial cyano groups. Treatment of trimethyl cis, cis‐cyclohexane‐1,3,5‐tricarboxylate with lithium diisopropylamide and dimethyl sulfate afforded mainly the trimethyl ester of Kemp's triacid, which showed three axial carboxylate groups. Two competitive factors, i.e. the steric effect of in coming electrophiles and the dipole‐dipole inter actions of the cyano or carboxylate groups, might inter play to give different stereoselectivities in these reaction systems.  相似文献   

2.
The (E) isomer in mixtures of (E) and (Z) 1,3‐hexadiene was polymerized with the system CoCl2(PiPrPh2)2‐MAO, a highly active and stereospecific catalyst for the preparation of 1,2 syndiotactic polybutadiene. A new crystalline polymer with a melting point of 109 °C was obtained. The polymer was characterized by IR, NMR (13C, 1H in solution and 13C in the solid‐state), X‐ray diffraction, DSC, GPC and it was found to have a trans‐1,2 syndiotactic structure with a 5.18 ± 0.04 Å fiber periodicity. Since only the (E) isomer was polymerized, at the end of the reaction we were able to separate the (Z) isomer, which was ultimately polymerized with CpTiCl3‐MAO at low temperature, obtaining a low molecular weight, stereoregular polymer that, characterized by IR and NMR methods, was found to exhibit a cis‐1,2 syndiotactic structure, never reported before. Molecular mechanics calculations were carried out on the trans‐1,2 syndiotactic polymer and structural models consistent with the X‐ray diffraction data are proposed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5339–5353, 2007  相似文献   

3.
A mixture of cis/trans isomers of phospha[1]ferrocenophanes equipped with one iPr group at the α position to the bridging PhP moiety was prepared. Both isomers (cis‐ 4 and trans‐ 4 ) were obtained as racemates and could be separated so that their thermal properties were investigated individually. The molecular structure of cis‐ 4 was determined by single‐crystal X‐ray analysis showing a tilt angle α=26.35(8)°. Interconversion between both isomers occurred in the melt at elevated temperatures and revealed that the trans isomer is thermodynamically more stable. Structural and thermodynamic data was complemented by DFT calculations (B3PW91/6‐311+G(d,p) and B3PW91‐D3(BJ)/6‐311+G(d,p)). Performance of thermal ring‐opening polymerization (ROP) of trans‐ 4 at 230 °C gave polymers and cyclic oligomers. Gel permeation chromatography (GPC) of the sulfurized polymer resulted in a molecular weight of 62.5 kDa (Mw) and a polydispersity index of 1.39 (PDI). Mass spectrometric analysis of the oligomers showed the presence of cyclic species from dimers to heptamers. After sulfurization, preparative thin layer chromatography led to the separation of three isomeric dimers. Structural characterization of these dimers by single‐crystal X‐ray analysis led to the conclusion that the Fe?Cp bond breaks during the thermal ROP process. A mechanism similar to the known mechanism of the photolytic ROP of ferrocenophanes is proposed.  相似文献   

4.
The reaction of 2‐chloro‐5‐nitropyridine with two equivalents of base produces the title carbanion as an intermediate in a ring‐opening/ring‐closing reaction. The crystal structures of the tetra‐n‐butylammonium salts of the intermediates, C16H36N+·C5H3N2O3, revealed that pseudo‐cis and pseudo‐trans isomers are possible. One crystal structure displayed a mixture of the two isomers with approximately 90% pseudo‐cis geometry and confirms the structure predicted by the SN(ANRORC) mechanism. The pseudo‐cis intermediate undergoes a slow isomerization over a period of months to the pseudo‐trans isomer, which does not have the appropriate geometry for the subsequent ring‐closing reaction. The structure of the pure pseudo‐trans isomer is also reported. In both isomers, the negative charge is highly delocalized, but relatively small differences in C—C bond distances indicate a system of conjugated double bonds with the nitro group bearing the negative charge. The packing of the two unit cells is very similar and largely determined by the interactions between the planar carbanion and the bulky tetrahedral cation.  相似文献   

5.
Aminoglycosides containing a 2,3‐trans carbamate group easily undergo anomerization from the 1,2‐trans glycoside to the 1,2‐cis isomer under mild acidic conditions. The N‐substituent of the carbamate has a significant effect on the anomerization reaction; in particular, an N‐acetyl group facilitated rapid and complete α‐anomerization. The differences in reactivity due to the various N‐substituents were supported by the results of DFT calculations; the orientation of the acetyl carbonyl group close to the anomeric position was found to contribute significantly to the directing of the anomerization reaction. By exploiting this reaction, oligoaminoglycosides with multiple 1,2‐cis glycosidic bonds were generated from 1,2‐trans glycosides in a one‐step process.  相似文献   

6.
Four stereoisomeric components were produced during the synthesis of the antidepressant drug (1S, 4S)‐sertraline hydrochloride due to the two chiral carbon centers in its chemical structure, including (1S, 4S), (1R, 4R), (1S, 4R), and (1R, 4S)‐isomer. Stereoselective separation of the target isomer (1S, 4S)‐sertraline from the medicinal reaction mixtures by countercurrent chromatography using hydroxypropyl‐β‐cyclodextrin as the stereoselective selector was investigated. A biphasic solvent system composed of n‐hexane/0.20 mol/L phosphate buffer solution with pH 7.6 containing 0.10 mol/L of hydroxypropyl‐β‐cyclodextrin (1:1, v/v) was selected for separation of cis‐sertraline and trans‐sertraline using reverse phase elution mode and (1S, 4S)‐sertraline was separated with (1R, 4R)‐sertraline using recycling elution mode. A fabricated in‐house analytical countercurrent chromatographic apparatus was used for optimization of the separation conditions. Stationary phase retention and peak resolution were investigated for separation of cis‐sertraline and trans‐sertraline by the analytical apparatus.  相似文献   

7.
Solvothermal reaction of Zn(NO3)2 ? 4 H2O, 1,4‐bis[2‐(4‐pyridyl)ethenyl]benzene (bpeb) and 4,4′‐oxybisbenzoic acid (H2obc) in the presence of dimethylacetamide (DMA) as one of the solvents yielded a threefold interpenetrated pillared‐layer porous coordination polymer with pcu topology, [Zn2(bpeb)(obc)2] ? 5 H2O ( 1 ), which comprised an unusual isomer of the well‐known paddle‐wheel building block and the transtranstrans isomer of the bpeb pillar ligand. When dimethylformamide (DMF) was used instead of DMA, a supramolecular isomer [Zn2(bpeb)(obc)2] ? 2 DMF ? H2O ( 2 ), with the transcistrans isomer of the bpeb ligand with a slightly different variation of the paddle‐wheel repeating unit, was isolated. In MeOH, single crystals of 2 were transformed by solvent exchange in a single‐crystal‐to‐single‐crystal (SCSC) manner to yield [Zn2(bpeb)(obc)2] ? 2 H2O ( 3 ), which is a polymorph of 1 . SCSC conversion of 3 to 2 was achieved by soaking 3 in DMF. Compounds 1 and 2 as well as 2 and 3 are supramolecular isomers.  相似文献   

8.
Summary: Novel azobenzene‐functionalized hydroxypropyl methylcellulose (AZO‐HPMC) polymers and their α‐cyclodextrin (α‐CD) complexes have been prepared. These polymers show interesting sol‐gel transition behavior in aqueous solutions. In the absence of α‐CD, the gelation temperature increases after UV irradiation, while in the presence of α‐CD, the gelation temperature decreases after UV irradiation. The difference in the gelation temperatures between the trans and cis samples of AZO‐HPMC opens a wide operating window for reversible regulation of the sol‐gel transition behavior by photoirradiation.

The UV‐induced cis/trans isomerism of azobenzene‐functionalized hydroxypropyl methylcellulose and its α‐cyclodextrin complexes.  相似文献   


9.
When treated with a series of nucleophiles cis-3-cyanomethylene-3-deocy-1,2:5,6-di-O-isopropylidene-α-D-ribo-hexofurannose ( 1 ) may yield its trans isomer, a product of allylic isomerization or a product of conjugate addition, depending on the nature of the nucleophile. The configuration of the starting material is also important as shown by the differences in reactivity between 1 and its trans-xylo isomer 8 .  相似文献   

10.
The conformational equilibrium of 1,2‐dichloroethane (DCE) in syndiotactic polystyrene (sPS)/DCE gels has been investigated by using Fourier transform infrared spectroscopy. Results show that the fraction of DCE in the trans conformation (XT) increases with increasing polymer concentration. From these XT values, by assuming that the crystalline phase in the gel presents the clathrate structure, the amount of DCE included in the crystalline phase and the fraction of polymer included in the crystalline phase were evaluated as a function of the gel composition.  相似文献   

11.
A straightforward synthesis of orthogonally Nα/Nγ‐protected trans‐ and cis‐4‐aminopipecolic acid is reported, starting from methyl cis‐4‐hydroxypiperidine‐2‐carboxylate. The two diastereomers were synthesized with the aid of C‐4 inversion (the trans isomer) or double C‐4 inversion (the cis isomer).  相似文献   

12.
The isomeric title compounds, 2,7‐bis(2‐cyanoethylsulfanyl)‐3,6‐(decane‐1,10‐diyldithio)tetrathiafulvalene and 2,6‐bis­(2‐cyanoethylsulfanyl)‐3,7‐(decane‐1,10‐diyldithio)­tetra­thiafulvalene, both C22H28N2S8, comprise bis­(2‐cyano­ethyl­sulfan­yl)tetra­thia­fulvalene units tethered by a saturated deca­methyl­enedithio linker attached in either a cis or a trans manner. The tetra­thia­fulvalene (TTF) group is planar in the cis isomer, but distorted significantly from planarity and twisted about its long axis in the trans isomer. In both structures, inter­molecular inter­actions are segregated into regions in which TTF units are brought into close contact and regions where the polymethyl­ene chains are brought into close contact. In the cis isomer, TTF units exhibit π–π stacking inter­actions, while in the trans isomer they do not.  相似文献   

13.
Ethyl vis‐ and trans‐2‐isothiocyanato‐1‐cyclopentanecarboxylates 2 and 7 were prepared by the reaction of the corresponding alicyclic ethyl 2‐amino‐1‐carboxylates and thiophosgene. The cis‐isothiocyanato compound 2 underwent ring closure with amines in one or two steps, resulting in 3‐substituted‐cis‐2‐thioxocyclopenta[d]pyrimidin‐4‐ones 3a‐g. The trans isomer 7 failed to cyclize, but gave carboxamide 8a,b or thiourea ester derivatives 9a,b.  相似文献   

14.
Addition reactions of thioamide dianions that were derived from N‐arylmethyl thioamides to imines and aziridines were carried out. The reactions of imines gave the addition products of N‐thioacyl‐1,2‐diamines in a highly diastereoselective manner in good‐to‐excellent yields. The diastereomeric purity of these N‐thioacyl‐1,2‐diamines could be enriched by simple recrystallization. The reduction of N‐thioacyl‐1,2‐diamines with LiAlH4 gave their corresponding 1,2‐diamines in moderate‐to‐good yields with retention of their stereochemistry. The oxidative‐desulfurization/cyclization of an N‐thioacyl‐1,2‐diamine in CuCl2/O2 and I2/pyridine systems gave the cyclized product in moderate yield and the trans isomer was obtained as the sole product. On the other hand, a similar cyclization reaction with antiformin (aq. NaClO) as an oxidant gave the cis isomer as the major product. The reactions of N‐tosylaziridines gave the addition products of N‐thioacyl‐1,3‐diamines with low diastereoselectivity but high regioselectivity and in good‐to‐excellent yields. The use of AlMe3 as an additive improved the efficiency and regioselectivity of the reaction. The stereochemistry of the obtained products was determined by X‐ray diffraction.  相似文献   

15.
The photoinduced isomerization of cis‐keto and trans‐keto isomers in N‐salicilydenemethylfurylamine has been studied using the surface‐hopping approach at the CASSCF level of theory. After the cis‐keto or trans‐keto isomer is excited to S1 state, the molecule initially moves to a excited‐state local minimum. The torsional motion around relative bonds in the chain drives the molecule to approach a keto‐form conical intersection and then nonadiabatic transition occurs. According to our full‐dimensional dynamics simulations, the trans‐keto and enol photoproducts are responsible for the photochromic effect of cis‐keto isomer excited to S1 state, while no enol isomer was obtained in the photoisomerization of trans keto on excitation. The cis keto to enol and cis keto to trans keto isomerizations are reversible photochemical reactions. It is confirmed that this aromatic Schiff base is a potential molecular switch. Furthermore, the torsion of C N bond occurs in the radiationless decay of trans‐keto isomer, while it is completely suppressed by an intramolecular hydrogen bonding interaction in the dynamics of cis‐keto form. Moreover, the excited‐state lifetime of cis keto is longer than that of trans‐keto form due to the O···H N hydrogen bond.  相似文献   

16.
The (−)‐ and (+)‐β‐irones ((−)‐ and (+)‐ 2 , resp.), contaminated with ca. 7 – 9% of the (+)‐ and (−)‐transα‐isomer, respectively, were obtained from racemic α‐irone via the 2,6‐trans‐epoxide (±)‐ 4 (Scheme 2). Relevant steps in the sequence were the LiAlH4 reduction of the latter, to provide the diastereoisomeric‐4,5‐dihydro‐5‐hydroxy‐transα‐irols (±)‐ 6 and (±)‐ 7 , resolved into the enantiomers by lipase‐PS‐mediated acetylation with vinyl acetate. The enantiomerically pure allylic acetate esters (+)‐ and (−)‐ 8 and (+)‐ and (−)‐ 9 , upon treatment with POCl3/pyridine, were converted to the β‐irol acetate derivatives (+)‐ and (−)‐ 10 , and (+)‐ and (−)‐ 11 , respectively, eventually providing the desired ketones (+)‐ and (−)‐ 2 by base hydrolysis and MnO2 oxidation. The 2,6‐cis‐epoxide (±)‐ 5 provided the 4,5‐dihydro‐4‐hydroxy‐cisα‐irols (±)‐ 13 and (±)‐ 14 in a 3 : 1 mixture with the isomeric 5‐hydroxy derivatives (±)‐ 15 and (±)‐ 16 on hydride treatment (Scheme 1). The POCl3/pyridine treatment of the enantiomerically pure allylic acetate esters, obtained by enzymic resolution of (±)‐ 13 and (±)‐ 14 , provided enantiomerically pure cisα‐irol acetate esters, from which ketones (+)‐ and (−)‐ 22 were prepared (Scheme 4). The same materials were obtained from the (9S) alcohols (+)‐ 13 and (−)‐ 14 , treated first with MnO2, then with POCl3/pyridine (Scheme 4). Conversely, the dehydration with POCl3/pyridine of the enantiomerically pure 2,6‐cis‐5‐hydroxy derivatives obtained from (±)‐ 15 and (±)‐ 16 gave rise to a mixture in which the γ‐irol acetates 25a and 25b and 26a and 26b prevailed over the α‐ and β‐isomers (Scheme 5). The (+)‐ and (−)‐cisγ‐irones ((+)‐ and (−)‐ 3 , resp.) were obtained from the latter mixture by a sequence involving as the key step the photochemical isomerization of the α‐double bond to the γ‐double bond. External panel olfactory evaluation assigned to (+)‐β‐irone ((+)‐ 2 ) and to (−)‐cisγ‐irone ((−)‐ 3 ) the strongest character and the possibility to be used as dry‐down note.  相似文献   

17.
Two isomeric trans‐4‐amino­azoxy­benzenes, trans‐1‐(4‐amino­phenyl)‐2‐phenyl­diazene 2‐oxide (α, C12H11N3O) and trans‐2‐(4‐amino­phenyl)‐1‐phenyl­diazene 2‐oxide (β, C12H11N3O), have been characterized by X‐ray diffraction. The α isomer is almost planar, having torsion angles along the Caryl—N bonds of only 4.9 (2) and 8.0 (2)°. The relatively short Caryl—N bond to the non‐oxidized site of the azoxy group [1.401 (2) Å], together with the significant quinoid deformation of the respective phenyl ring, is evidence of conjugation between the aromatic sextet and the π‐electron system of the azoxy group. The geometry of the β isomer is different. The non‐substituted phenyl ring is twisted with respect to the NNO plane by ca 50°, whereas the substituted ring is almost coplanar with the NNO plane. The non‐oxidized N atom in the β isomer has increased sp3 character, which leads to a decrease in the N—N—C bond angle to 116.8 (2)°, in contrast with 120.9 (1)° for the α isomer. The deformation of the C—C—C angles (1–2°) in the phenyl rings at the substitution positions is evidence of the different character of the oxidized and non‐oxidized N atoms of the azoxy group. In the crystal structures, mol­ecules of both isomers are arranged in chains connected by weak N—H?O (α and β) and N—H?N (β) hydrogen bonds.  相似文献   

18.
α‐Methyl‐L ‐proline is an α‐substituted analog of proline that has been previously employed to constrain prolyl peptide bonds in a trans conformation. Here, we revisit the cistrans prolyl peptide bond equilibrium in derivatives of α‐methyl‐L ‐proline, such as N‐Boc‐protected α‐methyl‐L ‐proline and the hexapeptide H‐Ala‐Tyr‐αMePro‐Tyr‐Asp‐Val‐OH. In Boc‐α‐methyl‐L ‐proline, we found that both cis and trans conformers were populated, whereas, in the short peptide, only the trans conformer was detected. The energy barrier for the cistrans isomerization in Boc‐α‐methyl‐L ‐proline was determined by line‐shape analysis of NMR spectra obtained at different temperatures and found to be 1.24 kcal/mol (at 298 K) higher than the corresponding value for Boc‐L ‐proline. These findings further illuminate the conformationally constraining properties of α‐methyl‐L ‐proline.  相似文献   

19.
Several pairs of cis- and trans-3-substituted acrylic acids (3SAA) were copolymerized with acrylamide in order to determine the major factors affecting the relative reactivities of geometrical isomers of 1,2-disubstituted ethylenes (1,2-DE). The results were that the relative reactivity of cis isomer is larger than that of trans isomer when one substituent is electron-withdrawing and the other is electron-donating. The trans isomer is more reactive than the cis isomer when both substituents are electron-withdrawing. A new method of reactivity comparison of cis- and trans-1,2-DE is proposed in regard to the inductive substituent constant.  相似文献   

20.
Poly[2‐(2′‐ethylhexyloxy)‐5‐methoxy‐1,4‐phenylene‐(1‐cyanovinylene)] MEH‐CN‐PPV and its all‐trans model compound 1,4‐bis(α‐cyanostyryl)‐2‐(2‐ethylhexyloxy)‐5‐methyloxybenzene were synthesized via Knoevenagel condensation. All‐cis isomer and cistrans isomer of 1,4‐bis(α‐cyanostyryl)‐2‐(2‐ethylhexyloxy)‐5‐methyloxybenzene were prepared by the photoisomerization reaction. Comparison of the 1H NMR spectra between MEH‐CN‐PPV and three model compounds proved the occurrence of cis‐vinylene in the backbone of MEH‐CN‐PPV. According to the ratio between the cis‐vinylene signal and trans‐vinylene signal, the content of the cis‐vinylene could be estimated to be 15% in MEH‐CN‐PPV. This large cis‐vinylene content came from the rapid photochemical isomerization of cyanovinylene and was likely relative to the poor electroluminescence property of MEH‐CN‐PPV. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1105–1113, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号