首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present pseudo-potential calculations of geometrical structures of stable isomers of LiAr n clusters with both an electronic ground state and excited states of the lithium atom. The Li atom is perturbed by argon atoms in LiAr n clusters. Its electronic structure obtained as the eigenfunctions of a single-electron operator describing the electron in the field of a Li+Ar n core, the Li+ and Ar atoms are replaced by pseudo-potentials. These pseudo-potentials include core-polarization operators to account for the polarization and correlation of the inert core with the valence Lithium electron [J Chem Phys 116, 1839 1]. The geometry optimization of the ground and excited states of LiAr n (n = 1–12) clusters is carried out via the Basin-Hopping method of Wales et al. [J Phys Chem 101, 5111 2; J Chem Phys 285, 1368 3]. The geometries of the ground and ionic states of LiAr n clusters were used to determine the energy of the high excited states of the neutral LiAr n clusters. The variation of the excited state energies of LiAr n clusters as a function of the number of argon atoms shows an approximate Rydberg character, corresponding to the picture of an excited electron surrounding an ionic cluster core, is already reached for the 3s state. The result of optical transitions calculations shows that the absorption spectral features are sensitive to isomer structure. It is clearly the case for transitions close to the 2p levels of Li which are distorted by the cluster environment.  相似文献   

2.
The dependence of the preferred microhydration sites of 4‐aminobenzonitrile (4ABN) on electronic excitation and ionization is determined through IR spectroscopy of its clusters with water (W) in a supersonic expansion and through quantum chemical calculations. IR spectra of neutral 4ABN and two isomers of its hydrogen‐bonded (H‐bonded) 4ABN–W complexes are obtained in the ground and first excited singlet states (S0, S1) through IR depletion spectroscopy associated with resonance‐enhanced multiphoton ionization. Spectral analysis reveals that electronic excitation does not change the H‐bonding motif of each isomer, that is, H2O binding either to the CN or the NH site of 4ABN, denoted as 4ABN–W(CN) and 4ABN–W(NH), respectively. The IR spectra of 4ABN+–W in the doublet cation ground electronic state (D0) are measured by generating them either in an electron ionization source (EI‐IR) or through resonant multiphoton ionization (REMPI‐IR). The EI‐IR spectrum shows only transitions of the most stable isomer of the cation, which is assigned to 4ABN+–W(NH). The REMPI‐IR spectrum obtained through isomer‐selective resonant photoionization of 4ABN–W(NH) is essentially the same as the EI‐IR spectrum. The REMPI‐IR spectrum obtained by ionizing 4ABN–W(CN) is also similar to that of the 4ABN+–W(NH) isomer, but differs from that calculated for 4ABN+–W(CN), indicating that the H2O ligand migrates from the CN to the NH site upon ionization with a yield of 100 %. The mechanism of this CN→NH site‐switching reaction is discussed in the light of the calculated potential energy surface and the role of intracluster vibrational energy redistribution.  相似文献   

3.
A discrete sequence of bare gold clusters of well‐defined nuclearity, namely Au25+, Au38+ and Au102+, formed in a process that starts from gold‐bound adducts of the protein lysozyme, were detected in the gas phase. It is proposed that subsequent to laser desorption ionization, gold clusters form in the gas phase, with the protein serving as a confining growth environment that provides an effective reservoir for dissipation of the cluster aggregation and stabilization energy. First‐principles calculations reveal that the growing gold clusters can be electronically stabilized in the protein environment, achieving electronic closed‐shell structures as a result of bonding interactions with the protein. Calculations for a cluster with 38 gold atoms reveal that gold interaction with the protein results in breaking of the disulfide bonds of the cystine units, and that the binding of the cysteine residues to the cluster depletes the number of delocalized electrons in the cluster, resulting in opening of a super‐atom electronic gap. This shell‐closure stabilization mechanism confers enhanced stability to the gold clusters. Once formed as stable magic number aggregates in the protein growth medium, the gold clusters become detached from the protein template and are observed as bare Aun+ (n=25, 38, and 102) clusters.  相似文献   

4.
The structures and relative stabilities of high‐spin n+1Aun?1Ag and nAun?1Ag+ (n = 2–8) clusters have been studied with density functional calculation. We predicted the existence of a number of previously unknown isomers. Our results revealed that all structures of high‐spin neutral or cationic Aun?1Ag clusters can be understood as a substitution of an Au atom by an Ag atom in the high‐spin neutral or cationic Aun clusters. The properties of mixed gold–silver clusters are strongly sized and structural dependence. The high‐spin bimetallic clusters tend to be holding three‐dimensional geometry rather than planar form represented in their low‐spin situations. Silver atom prefers to occupy those peripheral positions until to n = 8 for high‐spin clusters, which is different from its position occupied by light atom in the low‐spin situations. Our theoretical calculations indicated that in various high‐spin Aun?1Ag neutral and cationic species, 5Au3Ag, 3AuAg and 5Au4Ag+ hold high stability, which can be explained by valence bond theory. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

5.
The electronic structure and photochemistry of copper formate clusters, CuI2(HCO2)3 and CuIIn(HCO2)2n+1, n≤8, are investigated in the gas phase by using UV/Vis spectroscopy in combination with quantum chemical calculations. A clear difference in the spectra of clusters with CuI and CuII copper ions is observed. For the CuI species, transitions between copper d and s/p orbitals are recorded. For stoichiometric CuII formate clusters, the spectra are dominated by copper d–d transitions and charge-transfer excitations from formate to the vacant copper d orbital. Calculations reveal the existence of several energetically low-lying isomers, and the energetic position of the electronic transitions depends strongly on the specific isomer. The oxidation state of the copper centers governs the photochemistry. In CuII(HCO2)3, fast internal conversion into the electronic ground state is observed, leading to statistical dissociation; for charge-transfer excitations, specific excited-state reaction channels are observed in addition, such as formyloxyl radical loss. In CuI2(HCO2)3, the system relaxes to a local minimum on an excited-state potential-energy surface and might undergo fluorescence or reach a conical intersection to the ground state; in both cases, this provides substantial energy for statistical decomposition. Alternatively, a CuII(HCO2)3Cu0− biradical structure is formed in the excited state, which gives rise to the photochemical loss of a neutral copper atom.  相似文献   

6.
We present results from our investigations into correlating the styrene‐oxidation catalysis of atomically precise mixed‐ligand biicosahedral‐structure [Au25(PPh3)10(SC12H25)5Cl2]2+ (Au25bi) and thiol‐stabilized icosahedral core–shell‐structure [Au25(SCH2CH2Ph)18]? (Au25i) clusters with their electronic and atomic structure by using a combination of synchrotron radiation‐based X‐ray absorption fine‐structure spectroscopy (XAFS) and ultraviolet photoemission spectroscopy (UPS). Compared to bulk Au, XAFS revealed low Au–Au coordination, Au? Au bond contraction and higher d‐band vacancies in both the ligand‐stabilized Au clusters. The ligands were found not only to act as colloidal stabilizers, but also as d‐band electron acceptor for Au atoms. Au25bi clusters have a higher first‐shell Au coordination number than Au25i, whereas Au25bi and Au25i clusters have the same number of Au atoms. The UPS revealed a trend of narrower d‐band width, with apparent d‐band spin–orbit splitting and higher binding energy of d‐band center position for Au25bi and Au25i. We propose that the differences in their d‐band unoccupied state population are likely to be responsible for differences in their catalytic activity and selectivity. The findings reported herein help to understand the catalysis of atomically precise ligand‐stabilized metal clusters by correlating their atomic or electronic properties with catalytic activity.  相似文献   

7.
The synthesis of high‐purity and high‐yield Au25 clusters protected by the basic pyridyl ethanethiol (HSCH2CH2Py, 4‐PyET and 2‐PyET) is presented. Single‐crystal X‐ray diffraction of the [Au25(4‐PyET)18]??Na+ clusters has revealed a structure similar to that known for the phenyl ethanethiolate analogue, but with pyridyl‐N coordination to Na+, a more relaxed ligand shell, and a profoundly layered arrangement in the solid state. Because of the pendant Py moiety, the [Au25(PyET)18]? clusters are endowed with unique (de)protonation equilibria, which has been characterized in detail by UV/Vis absorption and 1H NMR spectroscopy. [Au25(PyET)18]? clusters showed an unexpectedly H+‐dependent solubility that is tunable in aqueous and organic solvents. The successful synthesis of the basic Py‐terminated thiolate‐protected Au25 clusters paves the way to realize a new family of metalloid clusters possessing basic properties.  相似文献   

8.
Since gold clusters have mostly been studied theoretically by using DFT calculations, more accurate studies are of importance. Thus, small neutral and anionic gold clusters (Aun and Aun?, n=4–7) were investigated by means of coupled cluster with singles, doubles, and perturbative triple excitations [CCSD(T)] calculations with large basis sets, and some differences between DFT and CCSD(T) results are discussed. Interesting isomeric structures that have dangling atoms were obtained. Structures having dangling atoms appear to be stable up to n=4 for neutral gold clusters and up to n=7 for anionic clusters. The relative stabilities and electronic properties of some isomers and major structures are discussed on the basis of the CCSD(T) calculations. This accurate structure prediction of small gold clusters corresponding to experimental photoelectron spectral peaks is valuable in the field of atom‐scale materials science including nanocatalysts.  相似文献   

9.
The synthesis of high‐purity and high‐yield Au25 clusters protected by the basic pyridyl ethanethiol (HSCH2CH2Py, 4‐PyET and 2‐PyET) is presented. Single‐crystal X‐ray diffraction of the [Au25(4‐PyET)18]??Na+ clusters has revealed a structure similar to that known for the phenyl ethanethiolate analogue, but with pyridyl‐N coordination to Na+, a more relaxed ligand shell, and a profoundly layered arrangement in the solid state. Because of the pendant Py moiety, the [Au25(PyET)18]? clusters are endowed with unique (de)protonation equilibria, which has been characterized in detail by UV/Vis absorption and 1H NMR spectroscopy. [Au25(PyET)18]? clusters showed an unexpectedly H+‐dependent solubility that is tunable in aqueous and organic solvents. The successful synthesis of the basic Py‐terminated thiolate‐protected Au25 clusters paves the way to realize a new family of metalloid clusters possessing basic properties.  相似文献   

10.
Gold phosphides show unique optical or semiconductor properties and there are extensive high technology applications, e.g. in laser diodes, etc. In spite of the various AuP structures known, the search for new materials is wide. Laser ablation synthesis is a promising screening and synthetic method. Generation of gold phosphides via laser ablation of red phosphorus and nanogold mixtures was studied using laser desorption ionisation time‐of‐flight mass spectrometry (LDI TOFMS). Gold clusters Aum+ (m = 1 to ~35) were observed with a difference of one gold atom and their intensities were in decreasing order with respect to m. For Pn+ (n = 2 to ~111) clusters, the intensities of odd‐numbered phosphorus clusters are much higher than those for even‐numbered phosphorus clusters. During ablation of P‐nanogold mixtures, clusters Aum+ (m = 1‐12), Pn+ (n = 2‐7, 9, 11, 13–33, 35–95 (odd numbers)), AuPn+ (n = 1, 2–88 (even numbers)), Au2Pn+ (n = 1‐7, 14–16, 21–51 (odd numbers)), Au3Pn+ (n = 1‐6, 8, 9, 14), Au4Pn+ (n = 1‐9, 14–16), Au5Pn+ (n = 1‐6, 14, 16), Au6Pn+ (n = 1‐6), Au7Pn+ (n = 1‐7), Au8Pn+ (n = 1‐6, 8), Au9Pn+ (n = 1‐10), Au10Pn+ (n = 1‐8, 15), Au11Pn+ (n = 1‐6), and Au12Pn+ (n = 1, 2, 4) were detected in positive ion mode. In negative ion mode, Aum (m = 1–5), Pn (n = 2, 3, 5–11, 13–19, 21–35, 39, 41, 47, 49, 55 (odd numbers)), AuPn (n = 4–6, 8–26, 30–36 (even numbers), 48), Au2Pn (n = 2–5, 8, 11, 13, 15, 17), Au3Pn (n = 6–11, 32), Au4Pn (n = 1, 2, 4, 6, 10), Au6P5, and Au7P8 clusters were observed. In both modes, phosphorus‐rich AumPn clusters prevailed. The first experimental evidence for formation of AuP60 and gold‐covered phosphorus Au12Pn (n = 1, 2, 4) clusters is given. The new gold phosphides generated might inspire synthesis of new Au‐P materials with specific properties. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
N,N′‐Bis(pyridin‐4‐yl)formamidine (4‐pyfH) was reacted with AuI and AgI metal salts to form a novel tetranuclear complex, tetrakis[μ‐N,N′‐bis(pyridin‐4‐yl)formamidinato]digold(I)disilver(I), [Ag2Au2(C11H9N4)2] or [AuxAg4–x(4‐pyf)4] (x = 0–4), 1 , which is supported by its metallophilicity. Due to the potential permutation of the coordinated metal ions, six different canonical structures of 1 can be obtained. Complex 1 shows an emission at 501 nm upon excitation at 375 nm in the solid state and an emission at 438 nm upon excitation at 304 nm when dispersed in methanol. Time‐dependent density functional theory (TD‐DFT) calculations confirmed that these emissions can be ascribed to metal‐to‐ligand charge transfer (MLCT) processes. Moreover, the calculations of the optimized structural conformations of the S0 ground state, and the S1 and T1 excited states are discussed and suggest a distorted planar conformation for the tetranuclear Au2Ag2 complex.  相似文献   

12.
The complexes [Au3(dcmp)2][X]3 {dcmp=bis(dicyclohexylphosphinomethyl)cyclohexylphosphine; X=Cl? ( 1 ), ClO4? ( 2 ), OTf? ( 3 ), PF6? ( 4 ), SCN?( 5 )}, [Ag3(dcmp)2][ClO4]3 ( 6 ), and [Ag3(dcmp)2Cl2][ClO4] ( 7 ) were prepared and their structures were determined by X‐ray crystallography. Complexes 2 – 4 display a high‐energy emission band with λmax at 442–452 nm, whereas 1 and 5 display a low‐energy emission with λmax at 558–634 nm in both solid state and in dichloromethane at 298 K. The former is assigned to the 3[5dσ*6pσ] excited state of [Au3(dcmp)2]3+, whereas the latter is attributed to an exciplex formed between the 3[5dσ*6pσ] excited state of [Au3(dcmp)2]3+ and the counterions. In solid state, complex [Ag3(dcmp)2][ClO4]3 ( 6 ) displays an intense emission band at 375 nm with a Stokes shift of ≈7200 cm?1 from the 1[4dσ*→5pσ] absorption band at 295 nm. The 375 nm emission band is assigned to the emission directly from the 3[4dσ*5pσ] excited state of 6 . Density functional theory (DFT) calculations revealed that the absorption and emission energies are inversely proportional to the number of metal ions (n) in polynuclear AuI and AgI linear chain complexes without close metal???anion contacts. The emission energies are extrapolated to be 715 and 446 nm for the infinite linear AuI and AgI chains, respectively, at metal???metal distances of about 2.93–3.02 Å. A QM/MM calculation on the model [Au3(dcmp)2Cl2]+ system, with Au???Cl contacts of 2.90–3.10 Å, gave optimized Au???Au distances of 2.99–3.11 Å in its lowest triplet excited state and the emission energies were calculated to be at approximately 600–690 nm, which are assigned to a three‐coordinate AuI site with its spectroscopic properties affected by AuI???AuI interactions.  相似文献   

13.
Au2+ is a simple but crucial model system for understanding the diverse catalytic activity of gold. While the Au2+ ground state (X2Σg+) is understood reasonably well from mass spectrometry and computations, no spectroscopic information is available for its first excited state (A2Σu+). Herein, we present the vibrationally resolved electronic spectrum of this state for cold Ar-tagged Au2+ cations. This exceptionally low-lying and well isolated A2Σ(u)+←X2Σ(g)+ transition occurs in the near-infrared range. The observed band origin (5738 cm−1, 1742.9 nm, 0.711 eV) and harmonic Au−Au and Au−Ar stretch frequencies (201 and 133 cm−1) agree surprisingly well with those predicted by standard time-dependent density functional theory calculations. The linearly bonded Ar tag has little impact on either the geometric or electronic structure of Au2+, because the Au2+⋅⋅⋅Ar bond (∼0.4 eV) is much weaker than the Au−Au bond (∼2 eV). As a result of 6 s←5d excitation of an electron from the antibonding σu* orbital (HOMO-1) into the bonding σg orbital (SOMO), the Au−Au bond contracts substantially (by 0.1 Å).  相似文献   

14.
Recently, it has been shown that the superatom concept is intimately connected to relevant tools of great chemical significance, such as the Lewis structure model and the VSEPR theory, which has been employed to understand hybridized and dimeric‐like molecules. This suggests a potential rational construction of superatomic clusters mimicking more complex structures. Here, we extend another well‐employed concept to the superatomic clusters, to construct a novel Au42 isomer with resemblance to cyclic aromatic molecules. It is shown that the Hückel (4n+2)π rule is ready to be applied, predicting aromatic behavior latterly supported by the favorable evaluation of the induced shielding cone formation. The D6h isomer of Au42 described here exhibits inherent characteristics mimicking aromatic hydrocarbon rings, displaying π‐superatomic orbitals and related properties. This new cluster is the first member of the superatomic clusters family to exhibit an aromatic π‐electron system.  相似文献   

15.
《化学:亚洲杂志》2017,12(16):2104-2120
A series of charge‐neutral AuIII complexes, which comprise a dicarbanionic C‐deprotonated biphenyl ligand and bidentate ancillary ligands ([Au(C^C)(L^X)]; L^X=β‐diketonate and relatives (O^O), quinolinolate and relatives (N^O), and diphosphino (P^P) ligands), were prepared. All the complexes are emissive in degassed CH2Cl2 solutions and in thin‐film samples with Φ em up to 18 and 35 %, respectively, except for 5 and 6 , which bear (N^O)‐type ancillary ligands. Variation of the electronic characteristics of the β‐diketonate ancillary ligand was demonstrated to be a viable route for tuning the emission color from blue‐green (peak λ em at ca. 466 nm for 1 and 2 ; 501 nm for 4 a and 4 b ) to orange (peak λ em at 585 nm for 3 ), in contrast to the common observations that the ancillary ligand has a negligible effect on the excited‐state energy of the AuIII complexes reported in the literature. DFT/time‐dependent (TD) DFT calculations revealed that the energies of the 3ππ*(C^C) and the 3ILCT(O^O) excited states (ILCT=intraligand charge transfer) switch in order on going from O^O=acetylacetonate (acac) to aryl‐substituted β‐diketonate ligands. Solution‐processed and vacuum‐deposited organic light‐emitting diode (OLED) devices of selected complexes were prepared. The vacuum‐deposited OLED fabricated with 2 displays a sky‐blue emission with a maximum external quantum efficiency (EQE) of 6.71 % and CIE coordinates of (0.22, 0.40). The crystal structures of 7 and 9 reveal short intermolecular AuIII⋅⋅⋅AuIII contacts, with intermetal distances of 3.408 and 3.453 Å, respectively. DFT/TDDFT calculations were performed on 7 and 9 to account for the noncovalent interactions. Solid samples of 1 , 3 , and 9 exhibit excimeric emission at room temperature, which is rarely reported in AuIII complexes.  相似文献   

16.
The study of chemical reactions between gold‐containing heteronuclear oxide clusters and small molecules can provide molecular level mechanisms to understand the excellent activity of gold supported by metal oxides. While the promotion role of gold in alkane transformation was identified in the clusters with atomic oxygen radicals (O?.), the role of gold in the systems without O?. is not clear. By employing mass spectrometry and quantum chemistry calculations, the reactivity of Au2VO3+ clusters with closed‐shell electronic structures toward ethane was explored. Both the dehydrogenation and ethene elimination channels were identified. It is gold rather than oxygen species initiating the C?H activation. The Au?Au dimer formed during the reactions plays important roles in ethane transformation. The reactivity comparison between Au2VO3+ and bare Au2+ demonstrates that Au2VO3+ not only retains the property of bare Au2+ that transforming ethane to dihydrogen, but also exhibits new functions in converting ethane to ethene, which reveals the importance of the composite system. This study provides a further understanding of the reactivity of metal oxide supported gold in alkane activation and transformation.  相似文献   

17.
In this article, we determine the ground‐state equilibrium geometries of the linear anionic carbon clusters C (n = 4–17) by means of the density functional theory B3LYP, CAM‐B3LYP, and coupled cluster CCSD(T) calculations, as well as their electronic spectra obtained by the multireference second‐order perturbation theory CASPT2 method. These studies indicate that these linear anions possess doublet 2g or 2u ground state, and the even‐numbered clusters are generally acetylenic, whereas the odd‐numbered ones are essentially cumulenic. The energy differences, electron affinities, and incremental binding energies of C chains all exhibit a notable tread of parity alternation, with n‐even chains being more stable than n‐odd ones. In addition, the predicted vertical excitation energies from the ground state to four low‐lying excited states are in reasonably good agreement with the available experimental observations, and the calculations for the higher excited electronic transitions can provide accurate information for the experimentalists and spectroscopists. Interestingly, the absorption wavelengths of the 12u/gX2g/u transitions of the n‐even clusters show a nonlinear trend of exponential growth, whereas those of the n‐odd counterparts are found to obey a linear relationship as a function of the chain size, as shown experimentally. Moreover, the absorption wavelengths of the transitions to the higher excited states of C series have the similar linear size dependence as well. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

18.
The method of comparing experimental and calculated ion ratios to determine a gas kinetic temperature (Tgas) characteristic of the origin of a polyatomic ion in inductively coupled plasma-mass spectrometry (ICP-MS) is applied to ArO+. Repeated measurements of ion ratios involving this species yield erratic Tgas values. Complications arise from the predicted presence of a low-lying excited electronic state (2Π) above the 4Σ ground state. Omission of this excited state yields unreasonably high temperatures (> 10,000 K) for nine out of nineteen trials. Inclusion of the excited electronic state in the partition function of ArO+ causes temperatures to increase further. The problem appears to be related to the prediction that ArO+ in the 2Π excited state dissociates into Ar+ and O, different products than ArO+ 4Σ which dissociates into Ar and O+. Adjustments to the calculations to account for these different products yield reasonable temperatures (2100 to 3500 K) that are consistent from day-to-day and similar to those seen for other weakly-bound polyatomic ions.  相似文献   

19.
The geometric, spectroscopic, and electronic properties of neutral yttrium‐doped gold clusters AunY (n=1–9) are studied by far‐infrared multiple photon dissociation (FIR‐MPD) spectroscopy and quantum chemical calculations. Comparison of the observed and calculated vibrational spectra allows the structures of the isomers present in the molecular beam to be determined. Most of the isomers for which the IR spectra agree best with experiment are calculated to be the energetically most stable ones. Attachment of xenon to the AunY cluster can cause changes in the IR spectra, which involve band shifts and band splittings. In some cases symmetry changes, as a result of the attachment of xenon atoms, were also observed. All the AunY clusters considered prefer a low spin state. In contrast to pure gold clusters, which exhibit exclusively planar lowest‐energy structures for small sizes, several of the studied species are three‐dimensional. This is particularly the case for Au4Y and Au9Y, while for some other sizes (n=5, 8) the 3D structures have an energy similar to that of their 2D counterparts. Several of the lowest‐energy structures are quasi‐2D, that is, slightly distorted from planar shapes. For all the studied species the Y atom prefers high coordination, which is different from other metal dopants in gold clusters.  相似文献   

20.
The compound [(μ‐dppp)(AuCl)2], previously reported to associate intermolecularly in a chain (catena) structure through AuI–AuI interactions (3.316Å), was obtained from gold(III) precursors in a cyclo form with shortened intramolecular AuI—AuI contacts at 3.237Å and a puckered AuPCCCPAu seven‐membered ring. DFT calculations using a large relativistic basis to account for the d10–d10 interaction reproduce the observed molecular structure in the crystal of this “linkage isomer”, including the conspicuous distortion at one of the gold atoms. The chelate complex [(dppp)PtCl2] was crystallized and structurally characterized as the dichloromethane solvate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号