首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A catalyst system based on [Pd(OAc)(2)]/(R,R)-DIOP has been found to effect asymmetric thiocarbonylation of certain prochiral 1,3-dienes to produce good yields of optically enriched beta,gamma-unsaturated thiol esters. The reaction was performed under an atmosphere of carbon monoxide (400 psi) at 110 degrees C in methylene chloride for 60 h. The asymmetric thiocarbonylation proceeded with good to excellent enantioselectivities (up to 89% ee). The stereoselectivity is strongly influenced by the structure of the chiral phosphine ligands and substrates, as well as by the reaction conditions. The enantiodetermination step is assumed to be CO insertion to a pi-allylpalladium intermediate.  相似文献   

2.
Three-component coupling reaction of conjugated dienes, thiols, and carbon monoxide affords an atom-economical thiocarbonylation of the dienes to give beta,gamma-unsaturated thioesters as the sole products. A catalyst system based on [Pd(OAc)(2)] and Ph(3)P showed excellent catalytic activity. The thiocarbonylation was performed under an atmosphere of carbon monoxide (400 psi) at 110 degrees C in CH(2)Cl(2) for 60 h. A wide variety of thioesters were synthesized in good to excellent yields from easily accessible starting materials. The reaction is believed to proceed via a eta(3)-allylpalladium intermediate. The thiocarbonylation, which is applicable to a wide variety of conjugated dienes, occurs in high regioselectivity, the latter dependent on the steric characteristics and stability of the eta(3)-allylpalladium complex.  相似文献   

3.
Nonprotected carbohydrates: The catalytic regioselective thiocarbonylation of carbohydrates by using organotin dichloride under mild conditions was demonstrated. The reaction afforded various deoxy saccharides in high yields and excellent regioselectivity in a minimum number of steps. The regioselectivity of the thiocarbonylation is attributed to the intrinsic character of the carbohydrates based on the stereorelationship of their hydroxy groups (see scheme).  相似文献   

4.
We report herein a protocol for thiolactam preparation with potassium sulfide via visible‐light‐mediated C(sp3)–H thiocarbonylation, in which polysulfide dianions and radical anions generated from potassium sulfide were the key active species. A variety of thiolactams were straightforward established under mild conditions. Moreover, it was successfully applied to structural modification of tetrahydroberberine.  相似文献   

5.
The carbonylation of alkanes 1 under radical‐reaction conditions was examined by using ethynyl triflone A as the unimolecular chain‐transfer (UMCT) reagent. Good to moderate yields of ethynyl ketones 2 were prepared by means of this three‐component coupling reaction. Higher CO pressures as well as lower concentrations of triflone A improved the efficiency of the reaction over the direct addition, the latter leading to alkylated ethynes 3 . In contrast to the reaction with A , the reaction of cyclohexane ( 1a ) with allyl triflone B (= ethyl 2‐methylene‐3‐[(trifluoromethyl)sulfonyl]propanoate) in the presence of CO gave a mixture of carbonylation products, including 8a formed from two molecules each of cyclohexane, CO, and allyl triflone B .  相似文献   

6.
A concise and efficient one-pot four-step synthesis of 2,4-disubstituted thiazoline via a cascade disulfide bond cleavage/thiocarbonylation/Staudinger reduction/aza-Wittig reaction is established. Treatment of various carboxylic acids with β-azido disulfides under this one-pot procedure obtained the desired thiazolines in good to excellent isolated yields.  相似文献   

7.
We describe here a novel procedure for the synthesis of highly substituted 2‐quinolinones. By this newly developed approach, 2‐quinolinone derivatives were prepared in moderate to good yields by carbonylative cyclization of N‐aryl‐pyridine‐2‐amines and internal alkynes by C?H activation. Remarkably, [Mo(CO)6] was applied as a solid CO source and the reaction proceeded in an atom economic manner.  相似文献   

8.
Reported herein is the development of the first enantioselective monodentate ligand assisted Pd‐catalyzed domino Heck carbonylation reaction with CO. The highly enantioselective domino Heck carbonylation of N‐aryl acrylamides and various nucleophiles, including arylboronic acids, anilines, and alcohols, in the presence of CO was achieved. A novel monodentate phosphoramidite ligand, Xida‐Phos, has been developed for this reaction and it displays excellent reactivity and enantioselectivity. The reaction employs readily available starting materials, tolerates a wide range of functional groups, and provides straightforward access to a diverse array of enantioenriched oxindoles having β‐carbonyl‐substituted all‐carbon quaternary stereocenters, thus providing a facile and complementary method for the asymmetric synthesis of bioactive hexahydropyrroloindole and its dimeric alkaloids.  相似文献   

9.
A novel method for the highly efficient and reversible capture of CO in carbanion‐functionalized ionic liquids (ILs) by a C‐site interaction is reported. Because of its supernucleophilicity, the carbanion in ILs could absorb CO efficiently. As a result, a relatively high absorption capacity for CO (up to 0.046 mol mol−1) was achieved under ambient conditions, compared with CO solubility in a commonly used IL [Bmim][Tf2N] (2×10−3 mol mol−1). The results of quantum mechanical calculations and spectroscopic investigation confirmed that the chemical interaction between the C‐site in the carbanion and CO resulted in the superior CO absorption capacities. Furthermore, the subsequent conversion of captured CO into valuable chemicals with good reactivity was also realized through the alkoxycarbonylation reaction under mild conditions. Highly efficient CO absorption by carbanion‐functionalized ILs provides a new way of separating and converting CO.  相似文献   

10.
A well‐defined triazole functionalized porous triazine based polymers act as solid heterogeneous catalyst after incorporating palladium oxide nanoparticles (PdO@TTAS) have been synthesized and thoroughly characterized by various techniques such as, FT‐IR, UV‐DRS, solid state 13C CP‐MAS, XPS, powder X‐ray diffraction, TGA, SEM and TEM analysis has been detailed illustrated. It is important to note that synthesized catalytic performance for carbonylation of aryl halides (X = I, Br) with EDC.HCl (N‐(3‐dimethylaminopropyl)‐N′‐ethylcarbodiimide hydrochloride), and formic acid was found to be an effective CO source in the presence of triethylamine as a base and DMF as a solvent medium at 80 °C for about 3 hr. The PdO@TTAS catalyst exhibits superior catalytic performance and along with good yield (up to 90%). Moreover, studying the heterogeneity and reusability of the environmentally friendly solid catalyst can be easily separated by simple filtration and then recycled for several times. In this reaction method, we avoided ligand, additive, promoters and CO gas, due to additional problem arise by using gaseous CO, highly toxic greenhouse gases and high pressurized reaction setup.  相似文献   

11.
Homogeneous ruthenium complexes modified by imidazole‐substituted monophosphines as catalysts for various highly efficient hydroformylation reactions were characterized by in situ IR spectroscopy under reaction conditions and NMR spectroscopy. A proper protocol for the preformation reaction from [Ru3(CO)12] is decisive to prevent the formation of inactive ligand‐modified polynuclear complexes. During catalysis, ligand‐modified mononuclear ruthenium(0) carbonyls were detected as resting states. Changes in the ligand structure have a crucial impact on the coordination behavior of the ligand and consequently on the catalytic performance. The substitution of CO by a nitrogen atom of the imidazolyl moiety in the ligand is not a general feature, but it takes place when structural prerequisites of the ligand are fulfilled.  相似文献   

12.
4,6‐Diaminoresorcinol, which is a raw material of ZYLON (PBO fiber), has an instability in air atmosphere. Therefore, very stable benzo[1,2‐d:5,4‐d']bis‐2(3H)‐oxazolone recognized a useful equivalent of 4,6‐diaminoresorcinol during the stages of production, storage, and transportation. By combining the sulfur‐assisted carbonylation of 4,6‐diaminoresorcinol dihydrochloride with carbon monoxide and triethylamine under 0.1 MPa at 20°C for 4 h in DMF with the oxidation of resulting hydrogen sulfide salt with molecular oxygen for 2 h, benzo‐[1,2‐d:5,4‐d']bis‐2(3H)‐oxazolone was obtained in a quantitative yield. Also, carbonylation of 2,5‐diaminohydroquinone dihydrochloride and 2,5‐diamino‐1,4‐benzenedithiol dihydrochloride was smoothly performed to give benzo[1,2‐d:4,5‐d']bis‐2(3H)‐oxazolone and benzo[1,2‐d:4,5‐d']bis‐2(3H)‐ thiazolone, respectively, in good to excellent yields under similar reaction conditions. Furthermore, 2,6‐dimercaptobenzo[1,2‐d:5,4‐d']bisoxazole, which is another equivalent of 4,6‐diaminoresorcinol, was obtained in excellent yield by the thiocarbonylation of 4,6‐diaminoresorcinol dihydro‐chloride with carbon disulfide in the presence of 1‐methylpyrrolidine at 20°C for 24 h in DMF. © 2011 Wiley Periodicals, Inc. Heteroatom Chem 23:111–116, 2012; View this article online at wileyonlinelibrary.com . DOI 10.1002/hc.20746  相似文献   

13.
In this paper, a bimolecular‐cyclization reaction between two different bis(allene)s with at least one heteroatom as the tether under the catalysis of trans‐[RhCl(CO)(PPh3)2] is described. This protocol provides an efficient entry to different heterocyclic 18,19‐norsteroid‐like scaffolds. The tricyclic product was formed highly selectively from the cyclization reaction of bis(2,3‐butadienyl)sulfide with dimethyl 2‐bis(2′,3′‐butadienyl)malonate, which sheds light on the mechanism involving the metalla‐[4.3.0]‐bicyclic intermediate formed by the cyclometallation of the terminal and the internal C=C bonds of each of the two allene moieties in 2‐bis(2′,3′‐butadienyl)malonate.  相似文献   

14.
CO‐releasing molecules (CORMs) are developed for investigations of the interaction between the signaling molecule carbon monoxide (CO) and cells or tissue. Prior to their application these molecules must be fully characterized with respect to their CO‐release mechanism. One widely used CORM for biological application is sodium boranocarbonate (CORM‐A1), which shows pH‐dependent CO liberation. The complete reaction mechanism of CORM‐A1 is not fully understood yet. Therefore, in this contribution time‐resolved gas‐phase IR spectroscopy is used to monitor the headspace above decaying CORM‐A1 solutions at four different pH values (5.8 to 7.4). Borane carbonyl is found as an intermediate in the gas phase, which is formed during CORM degradation and further decays to CO. Concentration profiles of a pseudoconsecutive first‐order reaction are successfully fitted to specific band areas of the measured gas‐phase spectra, and the rate constants are obtained. The production of borane carbonyl is strongly pH dependent (half‐lives between 5 and 106 min), whereas the decay of borane carbonyl in the gas phase is nearly constant with a half‐life of about 33 min. The ratio of liberated CO molecules per CORM‐A1 is determined to be 0.91±0.09, and boric acid is identified as further end product.  相似文献   

15.
A novel, efficient, metal-, base- and acid-free straightforward protocol has been developed for the construction of useful thioesters. The immense catalytic potential of HFIP for promoting the thiocarbonylation of acyl halides and thiols is disclosed. HFIP was recovered with ease and reused for further reactions without any loss of reactivity. Both aryl and alkyl thiols bearing electron-donating and electron-withdrawing groups as well as aryl- and alkyl acyl halides worked well in this reaction. Inexpensive precursors, short reaction time, obviating workup, high atom economy, and gram-scale preparation are the significant features of the developed eco-friendly route for S-carbonylation of thiols.  相似文献   

16.
A highly efficient and regioselective synthetic route to 6 H‐isoindolo[2,1‐a]indol‐6‐ones and indeno[1,2‐b]indol‐10(5 H)‐ones through the Pd‐catalyzed cyclocarbonylation of 2‐(2‐bromoaryl)indoles under atmospheric CO pressure has been achieved. Notably, the regioselectivity of the reaction was exclusively dependent on the structural characteristics of the indole substrates. With N‐unsubstituted indoles as the starting materials, the reaction afforded 6H‐isoindolo[2,1‐a]indol‐6‐ones in good‐to‐excellent yields. On the other hand, with N‐substituted indoles as the substrates, the reaction gave indeno[1,2‐b]indol‐10(5 H)‐ones in a highly regioselective manner.  相似文献   

17.
By using a novel, simple, and convenient synthetic route, enantiopure 6‐ethynyl‐BINOL (BINOL=1,1‐binaphthol) was synthesized and anchored to an azidomethylpolystyrene resin through a copper‐catalyzed alkyne–azide cycloaddition (CuAAC) reaction. The polystyrene (PS)‐supported BINOL ligand was converted into its diisopropoxytitanium derivative in situ and used as a heterogeneous catalyst in the asymmetric allylation of ketones. The catalyst showed good activity and excellent enantioselectivity, typically matching the results obtained in the corresponding homogeneous reaction. The allylation reaction mixture could be submitted to epoxidation by simple treatment with tert‐butyl hydroperoxide (TBHP), and the tandem asymmetric allylation epoxidation process led to a highly enantioenriched epoxy alcohol with two adjacent quaternary centers as a single diastereomer. A tandem asymmetric allylation/Pauson–Khand reaction was also performed, involving simple treatment of the allylation reaction mixture with Co2(CO)8/N‐methyl morpholine N‐oxide. This cascade process resulted in the formation of two diastereomeric tricyclic enones in high yields and enantioselectivities.  相似文献   

18.
Reported is a general procedure to synthesize tetrasubstituted enones, which are borylated in the β‐position, using a copper‐catalyzed four‐component coupling reaction of simple chemical feedstocks: internal alkynes, alkyl halides, bis(pinacolato)diboron (B2pin2), and CO. A broad scope of highly functionalized β‐borylated enones, a largely unknown class of organic compounds, can be accessed efficiently using this method. The synthesis of all‐carbon tetrasubstituted enones was realized by employing the β‐borylated enone unit, without purification, in a Suzuki–Miyaura coupling. The utility of the method was further demonstrated by various transformations, including halogenation, oxidation, and protodeboration, of the corresponding reduced oxaborole species to provide densely substituted allylic alcohol and ketone products.  相似文献   

19.
This study explores strategies to develop highly efficient direct carbon fuel cells (DCFCs) by com‐bining a solid‐oxide fuel cell (SOFC) with a catalyst‐aided carbon‐gasification process. This system employs Cu/CeO2 composites as both anodic electrodes and carbon additives in a cell of the type:carbon|Cu‐CeO2/YSZ/Ag|air. The study investigates the impact on in situ carbon‐gasification and DCFC performance characteristics of catalyst addition and variation in the carrier gas used (inert He versus reactive CO2). The results indicate that cell performance is significantly improved by infusing the catalyst into the carbon feedstock and by employing CO2 as the carrier gas. At 800 °C, the maxi‐mum power output is enhanced by approximately 40% and 230% for carbon/CO2 and car‐bon/catalyst/CO2 systems, respectively, compared with that of the carbon/He configuration. The increase observed when employing the catalyst and CO2 as the carrier gas can be primarily at‐tributed to the pronounced effect of the catalyst on carbon‐gasification through the re‐verse‐Boudouard reaction, and the subsequent in situ electro‐oxidation of CO at the anode three‐phase boundary.  相似文献   

20.
Site poisoning is a powerful method to unravel the nature of active sites or reaction intermediates. The nature of the intermediates involved in the hydrogenation of CO was unraveled by poisoning alumina‐supported cobalt catalysts with various concentrations of tin. The rate of formation of the main reaction products (methane and propylene) was found to be proportional to the concentration of multi‐bonded CO, likely located in hollow sites. The specific rate of decomposition of these species was sufficient to account for the formation of the main products. These hollow‐CO are proposed to be main reaction intermediates in the hydrogenation of CO under the reaction conditions used here, while linear CO are mostly spectators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号