首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Herein, we report the employment of the Mo? Mo quintuple bonded amidinate complex to stabilize Group 10 metal fragments {(Et3P)2M} (M=Pd, Pt) and give rise to the isolation of the unprecedented δ complexes. X‐ray analysis unambiguously revealed short contacts between Pd or Pt and two Mo atoms and a slight elongation of the Mo? Mo quintuple bond in these two compounds. Computational studies show donation of the Mo? Mo quintuple‐bond δ electrons to an empty σ orbital on Pd or Pt, and back‐donation from a filled Pd or Pt dπ orbital into the Mo? Mo δ* level (LUMO), consistent with the Dewar–Chatt–Duncanson model.  相似文献   

2.
New members of a novel class of metallasilatrane complexes [X‐Si‐(μ‐mt)4‐M‐Y], with M=Ni, Pd, Pt, X=F, Cl, Y=Cl, Br, I, and mt=2‐mercapto‐1‐methylimidazolide, have been synthesized and characterized structurally by X‐ray diffraction and by 29Si solid‐state NMR. Spin‐orbit (SO) effects on the 29Si chemical shifts induced by the metal, by the sulfur atoms in the ligand, and by heavy halide ligands Y=Cl, Br, I were investigated with the help of relativistic density functional calculations. Operators used in the calculations were constructed such that SO coupling can selectively be switched off for certain atoms. The unexpectedly large SO effects on the 29Si shielding in the Ni complex with X=Y=Cl reported recently originate directly from the Ni atom, not from other moderately heavy atoms in the complex. With respect to Pd, SO effects are amplified for Ni owing to its smaller ligand‐field splitting, despite the smaller nuclear charge. In the X=Cl, Y=Cl, Br, I series of complexes the Y ligand strongly modulates the 29Si shift by amplifying or suppressing the metal SO effects. The pronounced delocalization of the partially covalent M←Y bond plays an important role in modulating the 29Si shielding. We also demonstrate an influence from the X ligand on the 29Si SO shielding contributions originating at Y. The NMR spectra for [X‐Si‐(μ‐mt)4‐M‐Y] must be interpreted mainly based on electronic and relativistic effects, rather than structural differences between the complexes. The results highlight the sometimes unintuitive role of SO coupling in NMR spectra of complexes containing heavy atoms.  相似文献   

3.
Herein, we report the employment of the Mo Mo quintuple bonded amidinate complex to stabilize Group 10 metal fragments {(Et3P)2M} (M=Pd, Pt) and give rise to the isolation of the unprecedented δ complexes. X‐ray analysis unambiguously revealed short contacts between Pd or Pt and two Mo atoms and a slight elongation of the Mo Mo quintuple bond in these two compounds. Computational studies show donation of the Mo Mo quintuple‐bond δ electrons to an empty σ orbital on Pd or Pt, and back‐donation from a filled Pd or Pt dπ orbital into the Mo Mo δ* level (LUMO), consistent with the Dewar–Chatt–Duncanson model.  相似文献   

4.
The facile and tunable preparation of unique dinuclear [(L?)Pd?X?Pd(L?)] complexes (X=Cl or N3), bearing a ligand radical on each Pd, is disclosed, as well as their magnetochemistry in solution and solid state is reported. Chloride abstraction from [PdCl( NNOISQ )] ( NNOISQ =iminosemiquinonato) with TlPF6 results in an unusual monochlorido‐bridged dinuclear open‐shell diradical species, [{Pd( NNO ISQ)}2(μ‐Cl)]+, with an unusually small Pd‐Cl‐Pd angle (ca. 93°, determined by X‐ray). This suggests an intramolecular d8–d8 interaction, which is supported by DFT calculations. SQUID measurements indicate moderate antiferromagnetic spin exchange between the two ligand radicals and an overall singlet ground state in the solid state. VT EPR spectroscopy shows a transient signal corresponding to a triplet state between 20 and 60 K. Complex 2 reacts with PPh3 to generate [Pd(NNOISQ)(PPh3)]+ and one equivalent of [PdCl( NNOISQ )]. Reacting an 1:1 mixture of [PdCl( NNOISQ )] and [Pd(N3)( NNOI SQ)] furnishes the 1,1‐azido‐bridged dinuclear diradical [{Pd( NNO ISQ)}21‐N;μ‐N3]+, with a Pd‐N‐Pd angle close to 127° (X‐ray). Magnetic and EPR measurements indicate two independent S=1/2 spin carriers and no magnetic interaction in the solid state. The two diradical species both show no spin exchange in solution, likely because of unhindered rotation around the Pd?X?Pd core. This work demonstrates that a single bridging atom can induce subtle and tunable changes in structural and magnetic properties of novel dinuclear Pd complexes featuring two ligand‐based radicals.  相似文献   

5.
NHC adducts of the stannylene Trip2Sn (Trip=2,4,6‐triisopropylphenyl) were reacted with zero‐valent Ni, Pd, and Pt precursor complexes to cleanly yield the respective metal complexes featuring a three‐membered ring moiety Sn‐Sn‐M along with carbene transfer onto the metal and complete substitution of the starting ligands. Thus the easily accessible NHC adducts to stannylenes are shown to be valuable precursors for transition‐metal complexes with an unexpected Sn? Sn bond. The complexes have been studied by X‐ray diffraction and NMR spectroscopy as well as DFT calculations. The compounds featuring the structural motif of a distannametallacycle comprised of a [(NHC)2M0] fragment and Sn2Trip4 represent rare higher congeners of the well‐known olefin complexes. DFT calculations indicate the presence of a π‐type Sn–Sn interaction in these first examples for acyclic distannenes symmetrically coordinating to a zero‐valent transition metal.  相似文献   

6.
The covalent character of iron–sulfur bonds is a fundamental electronic structural feature for understanding the electronic and magnetic properties and the reactivity of biological and biomimetic iron–sulfur clusters. Conceptually, bond covalency obtained from X‐ray absorption spectroscopy (XAS) can be directly related to orbital compositions from electronic structure calculations, providing a standard for evaluation of density functional theoretical methods. Typically, a combination of functional and basis set that optimally reproduces experimental bond covalency is chosen, but its dependence on the population analysis method is often neglected, despite its important role in deriving theoretical bond covalency. In this study of iron tetrathiolates, and classical [2Fe? 2S] and [4Fe? 4S] clusters with only thiolate ligands, we find that orbital compositions can vary significantly depending on whether they are derived from frontier orbitals, spin densities, or electron sharing indexes from “Átoms in Molecules” (ÁIM) theory. The benefits and limitations of Mulliken, Minimum Basis Set Mulliken, Natural, Coefficients‐Squared, Hirshfeld, and AIM population analyses are described using ab initio wave function‐based (QCISD) and experimental (S K‐edge XAS) bond covalency. We find that the AIM theory coupled with a triple‐ζ basis set and the hybrid functional B(5%HF)P86 gives the most reasonable electronic structure for the studied Fe? S clusters. 2014 Wiley Periodicals, Inc.  相似文献   

7.
1,2-Bis-(triphenylphosphorane-ylidene-amino)ethane as a Bidentate Ligand in Transition Metal Complexes The reactions of Ph3P?N? C2H4? N?PPh3 with transition metal halogenides MX2 give according to eq. (1) novel bisiminophosphorane complexes of the type M(Ph3PNC2H4 NPPh3)X2 (M ? Co, X ? Cl 1 a , Br 1 b , J 1 c ; M ? Ni, X ? Cl 2 a , Br 2 b , J 2 c , M ? Hg, X ? Cl 3 , M ? Cd, X ? Cl 4 ). The preparation, properties, magnetic moments, and structure of the new complexes are reported  相似文献   

8.
The synthesis of a ruthenium carbene complex based on a sulfonyl‐substituted methandiide and its application in bond activation reactions and cooperative catalysis is reported. In the complex, the metal–carbon interaction can be tuned between a Ru?C single bond with additional electrostatic interactions and a Ru?C double bond, thus allowing the control of the stability and reactivity of the complex. Hence, activation of polar and non‐polar bonds (O?H, H?H) as well as dehydrogenation reactions become possible. In these reactions the carbene acts as a non‐innocent ligand supporting the bond activation as nucleophilic center in the 1,2‐addition across the metal–carbon double bond. This metal–ligand cooperativity can be applied in the catalytic transfer hydrogenation for the reduction of ketones. This concept opens new ways for the application of carbene complexes in catalysis.  相似文献   

9.
In a novel template synthesis of carbodiphosphoranes (CDPs), the phosphine functionalized CDP ligand C(dppm)(2) (dppm = Ph(2)PCH(2)PPh(2)) is formed in the coordination sphere of group 10 metals from CS(2) and 4 equivalents of dppm. The products are the PCP pincer complexes [M(Cl)(C(dppm)(2)-κ3P,C,P)]Cl (M = Ni, Pd, Pt) and 2 equivalents of dppmS. The compound C(dppm)(2), which is composed of a divalent carbon atom and two dppm subunits, represents a new PCP-type pincer ligand with the formally neutral carbon Lewis base of the CDP functionality as the central carbon. Treatment of [M(Cl)(C(dppm)(2)-κ3P,C,P)]Cl (M = Pd, Pt) with hydrochloric acid results in protonation at the CDP carbon atom and the formation of the PCP pincer complexes [M(Cl)(CH(dppm)(2)-κ3P,C,P)]Cl(2) (M = Pd, Pt). The PCP pincer ligand [CH(dppm)(2)](+) involves a formally cationic central carbon donor. The reaction of [Ni(Cl)(C(dppm)(2)-κ3P,C,P)]Cl with HCl leads to the extrusion of NiCl(2) and formation of the diprotonated CDP compound [CH(2)(dppm)(2)]Cl(2), from which the monoprotonated conjugate base [CH(dppm)(2)]Cl is obtained upon addition of bases, such as NH(3). The crystal structures of [M(Cl)(C(dppm)(2)-κ3P,C,P)]Cl (M = Ni, Pd, Pt), [Ni(Cl)(C(dppm)(2)-κ3P,C,P)](2)[NiCl(4)], [M(Cl)(CH(dppm)(2)-κ3P,C,P)]Cl(2) (M = Pd, Pt) as well as [CH(2)(dppm)(2)]Cl(2) and [CH(dppm)(2)]Cl are presented. A comparison of the solid state structures reveals interesting features, e.g. infinite supramolecular networks mediated by C-H···Cl hydrogen bond interactions and an unexpected loss of molecular symmetry upon protonation in the complexes [M(CH(dppm)(2)-κ3P,C,P)(Cl)]Cl(2) (M = Pd, Pt) as a result of the flexible ligand backbone. Additionally the new compounds were characterized comprehensively in solution by multinuclear (31)P, (13)C and (1)H NMR spectroscopy: Several spectroscopic parameters show a striking variability in particular regarding the carbodiphosphorane functionality. Furthermore the compound [Ni(Cl)(C(dppm)(2)-κ3P,C,P)]Cl was examined by cyclic voltammetry (CV) and could be shown to display quasi-reversible oxidative as well as reductive behaviour.  相似文献   

10.
A tetra(carboxylated) PCP pincer ligand has been synthesized as a building block for porous coordination polymers (PCPs). The air‐ and moisture‐stable PCP metalloligands are rigid tetratopic linkers that are geometrically akin to ligands used in the synthesis of robust metal–organic frameworks (MOFs). Here, the design principle is demonstrated by cyclometalation with PdIICl and subsequent use of the metalloligand to prepare a crystalline 3D MOF by direct reaction with CoII ions and structural resolution by single crystal X‐ray diffraction. The Pd?Cl groups inside the pores are accessible to post‐synthetic modifications that facilitate chemical reactions previously unobserved in MOFs: a Pd?CH3 activated material undergoes rapid insertion of CO2 gas to give Pd?OC(O)CH3 at 1 atm and 298 K. However, since the material is highly selective for the adsorption of CO2 over CO, a Pd?N3 modified version resists CO insertion under the same conditions.  相似文献   

11.
The equilibrium geometries and first bond dissociation energies of the homoleptic complexes M(EMe)4 and M(CO)4 with M = Ni, Pd, Pt and E = B, Al, Ga, In, Tl have been calculated at the gradient corrected DFT level using the BP86 functionals. The electronic structure of the metal‐ligand bonds has been examined with the topologial analysis of the electron density distribution. The nature of the bonding is revealed by partitioning the metal‐ligand interaction energies into contributions by electrostatic attraction, covalent bonding and Pauli repulsion. The calculated data show that the M‐CO and M‐EMe bonding is very similar. However, the M‐EMe bonds of the lighter elements E are much stronger than the M‐CO bonds. The bond energies of the latter are as low or even lower than the M‐TlMe bonds. The main reason why Pd(CO)4 and Pt(CO)4 are unstable at room temperature in a condensed phase can be traced back to the already rather weak bond energy of the Ni‐CO bond. The Pd‐L bond energies of the complexes with L = CO and L = EMe are always 10 — 20 kcal/mol lower than the Ni‐L bond energies. The calculated bond energy of Ni(CO)4 is only Do = 27 kcal/mol. Thus, the bond energy of Pd(CO)4 is only Do = 12 kcal/mol. The first bond dissociation energy of Pt(CO)4 is low because the relaxation energy of the Pt(CO)3 fragment is rather high. The low bond energies of the M‐CO bonds are mainly caused by the relatively weak electrostatic attraction and by the comparatively large Pauli repulsion. The σ and π contributions to the covalent M‐CO interactions have about the same strength. The π bonding in the M‐EMe bonds is less than in the M‐CO bonds but it remains an important part of the bond energy. The trends of the electrostatic and covalent contributions to the bond energies and the σ and π bonding in the metal‐ligand bonds are discussed.  相似文献   

12.
Thermal activation of molecular oxygen is observed for the late‐transition‐metal cationic complexes [M(H)(OH)]+ with M=Fe, Co, and Ni. Most of the reactions proceed via insertion in a metal? hydride bond followed by the dissociation of the resulting metal hydroperoxide intermediate(s) upon losses of O, OH, and H2O. As indicated by labeling studies, the processes for the Ni complex are very specific such that the O‐atoms of the neutrals expelled originate almost exclusively from the substrate O2. In comparison to the [M(H)(OH)]+ cations, the ion? molecule reactions of the metal hydride systems [MH]+ (M=Fe, Co, Ni, Pd, and Pt) with dioxygen are rather inefficient, if they occur at all. However, for the solvated complexes [M(H)(H2O)]+ (M=Fe, Co, Ni), the reaction with O2 involving O? O bond activation show higher reactivity depending on the transition metal: 60% for the Ni, 16% for the Co, and only 4% for the Fe complex relative to the [Ni(H)(OH)]+/O2 couple.  相似文献   

13.
The crystal structures of bis(3‐fluoro‐salicylaldoximato)nickel(II) and bis(3‐methoxy‐salicylaldoximato)nickel(II) have been determined at room temperature between ambient pressure and approximately 6 GPa. The principal effect of pressure is to reduce intermolecular contact distances. In the fluoro system molecules are stacked, and the Ni???Ni distance decreases from 3.19 Å at ambient pressure to 2.82 Å at 5.4 GPa. These data are similar to those observed in bis(dimethylglyoximato)nickel(II) over a similar pressure range, though contrary to that system, and in spite of their structural similarity, the salicyloximato does not become conducting at high pressure. Ni–ligand distances also shorten, on average by 0.017 and 0.011 Å for the fluoro and methoxy complexes, respectively. Bond compression is small if the bond in question is directed towards an interstitial void. A band at 620 nm, which occurs in the visible spectrum of each derivative, can be assigned to a transition to an antibonding molecular orbital based on the metal 3d(x2?y2) orbital. Time‐dependent density functional theory calculations show that the energy of this orbital is sensitive to pressure, increasing in energy as the Ni–ligand distances are compressed, and consequently increasing the energy of the transition. The resulting blueshift of the UV‐visible band leads to piezochromism, and crystals of both complexes, which are green at ambient pressure, become red at 5 GPa.  相似文献   

14.
A comparative structural study of LiMPO4 (M = Mn, Fe, Co, Ni) orthophosphates and Li2MPO4F (M = Co, Ni) fluorophosphates obtained by mechanochemically assisted solid-state synthesis is performed using powder XRD, IR, and NMR spectroscopy methods. It is shown that all compounds crystallize in the orthorhombic symmetry (space group Pnma). Lattice parameters decrease on passing from Mn to Ni, which is due to the decrease in the ionic radius of the d metal. According to the IR spectroscopy data, in this series an increase in the covalency of the P–O bond is observed along with a decrease in the covalency of the M–O bond. On passing to fluorophosphates, the symmetry of PO4 tetrahedra increases. 6Li and 31P NMR spectra of all compounds are characterized by the dependence of the contact shift on the nature of metal M and the degree of distortion of the MO6 coordination polyhedron. 6Li MAS NMR line width is noticeably affected by the concentration of structural defects. Unlike orthophosphates with equivalent lithium ions, fluorophosphates contain lithium ions in three different positions.  相似文献   

15.
The novel dinuclear Ni2+ complex [Ni2(μ‐Cl)(μ‐OAc) (EGTB)]·Cl·ClO4·2CH3OH, where EGTB is N, N, N′, N′‐tetrakis (2‐benzimidazolyl methyl‐1, 4‐di‐ethylene amino)glycol ether, crystallizes in the orthorhombic space group Pnma with a = 15.272(2), b = 14.768(2), c = 22.486(3) Å, V = 5071.4(12) Å3, Z = 4, Dcalc = 1.414 g cm?3, and is bridged by triply bridging agents of a chloride ion, an acetate and an intra‐ligand (‐OCH2CH2O‐) group. The nickel coordination geometry is that of a slightly distorted octahedron with a NiN3O2Cl arrangement of the ligand donor atoms. The Ni–Cl distance is 2.361(2) Å, and two Ni–O distances are 1.996(5) and 2.279(6) Å. The three Ni–N distances are 2.033(7), 2.060(6), and 2.166(6) Å with the Ni–N bond trans to an ether oxygen the shortest, the Ni–N bond trans to an acetate oxygen the middle and the Ni–N bond trans to Cl the longest.  相似文献   

16.
Coordinating properties of acetoxybenziporphyrin, (TPBPOAc)H, have been investigated for a number of metal ions. Insertion of Ni, Pd, and Fe results in the cleavage of the acetoxy group leading to complexes (TPBPO)Ni(II), (TPBPO)Pd(II), and (TPBPO)Fe(III)X containing a M-O bond. No cleavage is observed with Zn(II) and Cd(II), which form complexes (TPBPOAc)M(II)Cl, where M = Zn, Cd. (TPBPO)Ni(II) can also be obtained from the dication of hydroxybenziporphyrin, [(TPBPOH)H(3)]Cl(2), which is prepared by acid hydrolysis of the acetoxy compound. The diamagnetic (TPBPO)Ni(II) can be transformed into the paramagnetic (TPBPOAc)Ni(II)Cl in a reaction with acetyl chloride. X-ray structures have been determined for (TPBPO)Pd(II) and (TPBPOAc)Zn(II)Cl. In the palladium species, the phenolate moiety forms a strong bond to the Pd ion and an unusual interaction geometry is observed, enforced by the macrocyclic environment. Association of a TFA molecule to the phenolic oxygen does not cause significant structural changes in the (TPBPO)Pd(II) molecule. In (TPBPOAc)Zn(II)Cl, the metal ion weakly interacts with the phenolic fragment. The paramagnetic Fe(III) complexes, (TPBPO)Fe(III)X, have been investigated with (1)H NMR spectroscopy. The observed spectral patterns are consistent with the presence of a high-spin Fe(III) center and pi delocalization of spin density onto the phenoxide fragment. Each of the compounds (TPBPO)Fe(III)X exists in solution as a mixture of two isomers, which for X = I are shown to remain in a temperature-dependent equilibrium. The observed isomerism results from two nonequivalent orientations of the axial halide with respect to the puckered macrocyclic ring.  相似文献   

17.
The activation of element–hydrogen bonds by means of metal–ligand cooperation has received increasing attention as alternative to classical activation processes, which exclusively occur at the metal center. Carbene complexes derived from methandiide precursors have been applied in this chemistry enabling the activation of a series of E?H bonds by addition reactions across the M?C bond. However, no chiral carbene complexes have been applied to realize stereoselective transformations to date. Herein, we report the isolation and structure elucidation of an enantiomerically pure dilithiomethane, which could be prepared by direct double deprotonation. The obtained dilithium salt was used for the preparation of the first chiral methandiide‐derived carbene complex, which was applied in stereoselective cooperative S?H bond activation.  相似文献   

18.
The Schiff base N-crotonyl-2-hydroxyphenylazomethine HL, derived from the reaction of acrylamide and salicylaldehyde, was synthesised. Polymeric complexes were obtained from the reaction of polymeric HL with divalent metals. The mode of bonding and overall geometry of the complexes were determined through physico-chemical and spectroscopic methods and compared with that previously reported for the analogous monomeric ligand. These studies revealed tetrahedral geometries around the metal centres for Mn(II), Co(II), Zn(II), Cd(II) and Hg(II) complexes of general formula [M(L)Cl], octahedral for Ni(II) and Cu(II) complexes of general formula [M′(L)Cl(H2O)2], and square planar for Pd(II) complex of general formula [Pd(L)Cl].  相似文献   

19.
Dioxygen activation for effective C?O bond formation in the coordination sphere of a metal is a long‐standing challenge in chemistry for which the design of catalysts for oxygenations is slowed down by the complicated, and sometimes poorly understood, mechanistic panorama. In this context, olefin–peroxide complexes could be valuable models for the study of such reactions. Herein, we showcase the isolation of rare “Ir(cod)(peroxide)” complexes (cod=1,5‐cyclooctadiene) from reactions with oxygen, and then the activation of the peroxide ligand for O?O bond cleavage and C?O bond formation by transfer of a hydrogen atom through proton transfer/electron transfer reactions to give 2‐iradaoxetane complexes and water. 2,4,6‐Trimethylphenol, 1,4‐hydroquinone, and 1,4‐cyclohexadiene were used as hydrogen atom donors. These reactions can be key steps in the oxy‐functionalization of olefins with oxygen, and they constitute a novel mechanistic pathway for iridium, whose full reaction profile is supported by DFT calculations.  相似文献   

20.
This review article describes the chemistry of transition‐metal complexes containing heavier group 14 elements (Si, Ge, and Sn) as the σ‐electron‐acceptor (Z‐type) ligands and discusses the characteristics of bonds between the transition metal and Z‐type ligand. Moreover, we review the iridium hydride mediated cleavage of E–X bonds (E=Si, Ge; X=F, Cl), where the key intermediates are pentacoordinate silicon or germanium compounds bearing a dative M→E bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号