首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
The nargenicin family of antibiotics are macrolides containing a rare ether‐bridged cis‐decalin motif. Several of these compounds are highly active against multi‐drug resistant organisms. Despite the identification of the first members of this family almost 40 years ago, the genetic basis for the production of these molecules and the enzyme responsible for formation of the oxa bridge, remain unknown. Here, the 85 kb nargenicin biosynthetic gene cluster was identified from a human pathogenic Nocardia arthritidis isolate and this locus is solely responsible for nargenicin production. Further investigation of this locus revealed a putative iron‐α‐ketoglutarate‐dependent dioxygenase, which was found to be responsible for the formation of the ether bridge from the newly identified deoxygenated precursor, 8,13‐deoxynargenicin. Uncovering the nargenicin biosynthetic locus provides a molecular basis for the rational bioengineering of these interesting antibiotic macrolides.  相似文献   

12.
13.
l ‐4‐Chlorokynurenine (l ‐4‐Cl‐Kyn) is a neuropharmaceutical drug candidate that is in development for the treatment of major depressive disorder. Recently, this amino acid was naturally found as a residue in the lipopeptide antibiotic taromycin. Herein, we report the unprecedented conversion of l ‐tryptophan into l ‐4‐Cl‐Kyn catalyzed by four enzymes in the taromycin biosynthetic pathway from the marine bacterium Saccharomonospora sp. CNQ‐490. We used genetic, biochemical, structural, and analytical techniques to establish l ‐4‐Cl‐Kyn biosynthesis, which is initiated by the flavin‐dependent tryptophan chlorinase Tar14 and its flavin reductase partner Tar15. This work revealed the first tryptophan 2,3‐dioxygenase (Tar13) and kynurenine formamidase (Tar16) enzymes that are selective for chlorinated substrates. The substrate scope of Tar13, Tar14, and Tar16 was examined and revealed intriguing promiscuity, thereby opening doors for the targeted engineering of these enzymes as useful biocatalysts.  相似文献   

14.
The dehydratase domains (DHs) of the iso‐migrastatin (iso‐MGS) polyketide synthase (PKS) were investigated by systematic inactivation of the DHs in module‐6, ‐9, ‐10 of MgsF (i.e., DH6, DH9, DH10) and module‐11 of MgsG (i.e., DH11) in vivo, followed by structural characterization of the metabolites accumulated by the mutants, and biochemical characterization of DH10 in vitro, using polyketide substrate mimics with varying chain lengths. These studies allowed us to assign the functions for all four DHs, identifying DH10 as the dedicated dehydratase that catalyzes the dehydration of the C17 hydroxy group during iso‐MGS biosynthesis. In contrast to canonical DHs that catalyze dehydration of the β‐hydroxy groups of the nascent polyketide intermediates, DH10 acts in a long‐range manner that is unprecedented for type I PKSs, a novel dehydration mechanism that could be exploited for polyketide structural diversity by combinatorial biosynthesis and synthetic biology.  相似文献   

15.
16.
17.
18.
19.
A strategy to deliver a well‐defined persulfide species in a biological medium is described. Under near physiological conditions, the persulfide prodrug can be activated by an esterase to generate a “hydroxymethyl persulfide” intermediate, which rapidly collapses to form a defined persulfide. Such persulfide prodrugs can be used either as chemical tools to study persulfide chemistry and biology or for future development as H2S‐based therapeutic reagents. Using the persulfide prodrugs developed in this study, the reactivity between S ‐methyl methanethiosulfonate (MMTS) with persulfide was unambiguously demonstrated. Furthermore, a representative prodrug exhibited potent cardioprotective effects in a murine model of myocardial ischemia‐reperfusion (MI/R) injury with a bell shape therapeutic profile.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号