首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
C−H/C−C functionalizations with methylenecyclopropanes (MCPs) were accomplished with a versatile base‐metal catalyst. A robust manganese(I) complex enabled the expedient annulation of MCPs by synthetically meaningful ketimines to deliver, upon one‐pot hydroarylation, densely substituted polycylic anilines in a step‐economical fashion. Mechanistic studies provided strong support for a facile organometallic C−H manganation, while typical cobalt, ruthenium, rhodium, and palladium catalysts were found completely ineffective.  相似文献   

2.
Heteroarenes are important structural motif in functional molecules. A MnI‐catalyzed 1,2‐diheteroarylation of allenes via a C−H activation/Smiles rearrangement cascade is presented. The reaction occurred under additive‐free or even solvent‐free conditions, which allowed the creation of two C−C and one C−N bonds in a single operation. A series of structurally diverse bicyclic or tricyclic compounds bearing an exocyclic double bond were constructed in good to excellent efficiency. The decarboxylative ring‐opening of the products led to the facile synthesis of vicinal biheteroaryls. Synthetic applications were demonstrated and preliminary mechanistic studies were conducted.  相似文献   

3.
Chemoselective hydroarylations were accomplished by a novel synergistic Brønsted acid/manganese(I)‐catalyzed C−H activation manifold. Thus, alkynes bearing O‐leaving groups could, for the first time, be employed for C−H alkenylations without concurrent β‐O elimination, thereby setting the stage for versatile late‐stage diversifications. Also described is the first manganese‐catalyzed C−H activation in continuous flow, thus enabling efficient hydroarylations within only 20 minutes.  相似文献   

4.
Pyridines/pyrimidines are common and effective directing groups in C?H activation. However, they are poorly functionalizable heteroarenes. Reported in this work is Mn‐catalyzed dehydrocyanative transannulation between three classes of heteroarenes and propargyl carbonates. The pyridyl/pyrimidyl groups in the heteroarenes initially function as directing groups to enable C?H allenylation; they then undergo intramolecular Diels–Alder/retro‐Diels–Alder reactions with the allene moiety to afford fused carbo/heterocycles. Three key intermediates at different stages of the reaction were isolated.  相似文献   

5.
A Pd‐catalyzed spirocyclization involving a sequential carbopalladation, intramolecular C−H activation, and a highly regioselective alkyne insertion to afford spirooxindoles and spirodihydrobenzofurans has been achieved. The spirocyclic products were generated in good to excellent yields with complete regiocontrol in a readily scalable procedure.  相似文献   

6.
7.
Rhodium(III)‐ and cobalt(III)‐catalyzed C−H activation of indoles and coupling with 1,6‐enynes is discussed. Under rhodium(III) catalysis, the alkyne insertion follows 2,1‐regioselectivity with a subsequent type‐I intramolecular Diels–Alder reaction (IMDA) to afford [6,5]‐fused cycles. When catalyzed by the cobalt(III) congener, 1,2‐insertion of the alkyne is preferred, and followed by a rare type‐II IMDA, thus leading to bridged [3,3,1]‐cycles. This selectivity of the alkyne insertion was mainly tuned by the steric sensitivity of the catalyst.  相似文献   

8.
An efficient visible light induced rhodium(I)‐catalyzed regioselective borylation of aromatic C?H bonds is reported. The photocatalytic system is based on a single NHC?RhI complex capable of both harvesting visible light and enabling the bond breaking/forming at room temperature. The chelating nature of the NHC‐carboxylate ligand was critical to ensure the stability of the RhI complex and to provide excellent photocatalytic activities. Experimental mechanistic studies evidenced a photooxidative ortho C?H bond addition upon irradiation with blue LEDs, leading to a cyclometalated RhIII‐hydride intermediate.  相似文献   

9.
A palladium‐catalyzed reaction of γ,δ‐unsaturated oxime esters with oxadiazoles afforded dihydropyrroles in good to excellent yields through an intramolecular iminopalladation/intermolecular direct heteroarene C−H alkylation cascade. This unprecedented iminoarylation of alkenes was subsequently realized in an enantioselective manner in the presence of a chiral bidentate phosphine ligand (Synphos).  相似文献   

10.
Manganese(I)‐catalyzed C−H alkynylations with organic halides occurred with unparalleled substrate scope, and thus enabled step‐economical C−H functionalizations with silyl, aryl, alkenyl, and alkyl haloalkynes. The versatility of the manganese(I) catalysis manifold enabled C−H couplings with haloalkynes featuring, among others, fluorescent labels, steroids, and amino acids, thereby setting the stage for peptide ligation as well as the efficient molecular assembly of acyclic and cyclic peptides. A plausible catalytic cycle was proposed.  相似文献   

11.
A strategy is reported in which traceless directing groups (TDGs) are used to promote the redox‐neutral MnI‐catalyzed regioselective synthesis of N‐heterocycles. Alkyne coupling partners bearing a traceless directing group, which serves as both the chelator and internal oxidant, were used to control the regioselectivity of the annulation reactions. This operationally simple approach is highly effective with previously challenging unsymmetrical alkyne systems, including unbiased dialkyl alkynes, with perfect regioselectivity. The simple conditions and the ability to carry out synthesis on a gram scale underscore the usefulness of this method. The application of this strategy in the concise synthesis of the bioactive compound PK11209 and the pharmaceutical moxaverine is also described.  相似文献   

12.
Bioorthogonal C?H allylation with ample scope was accomplished through a versatile manganese(I)‐catalyzed C?H activation for the late‐stage diversification of structurally complex peptides. The unique robustness of the manganese(I) catalysis manifold was reflected by full tolerance of sensitive functional groups, such as iodides, esters, amides, and OH‐free hydroxy groups, thereby setting the stage for the racemization‐free synthesis of C?H fused peptide hybrids featuring steroids, drug molecules, natural products, nucleobases, and saccharides.  相似文献   

13.
A nickel/NHC system for regioselective oxidative annulation by double C?H bond activation and concomitant alkyne insertion is described. The catalytic reaction requires a bidentate directing group, such as an 8‐aminoquinoline, embedded in the substrate. Various 5,6,7,8‐tetrasubstituted‐N‐(quinolin‐8‐yl)‐1‐naphthamides can be prepared as well as phenanthrene and benzo[h]quinoline amide derivatives. Diarylalkynes, dialkylalkynes, and arylalkylalkynes can be used in the system. A Ni0/NiII catalytic cycle is proposed as the main catalytic cycle. The alkyne plays a double role as a two‐component coupling partner and as a hydrogen acceptor.  相似文献   

14.
The reaction of nitroxyl radicals TEMPO (2,2′,6,6′‐tetramethylpiperidinyloxyl) and AZADO (2‐azaadamantane‐N‐oxyl) with an iron(I) synthon affords iron(II)‐nitroxido complexes (ArL)Fe(κ1‐TEMPO) and (ArL)Fe(κ2‐N,O‐AZADO) (ArL=1,9‐(2,4,6‐Ph3C6H2)2‐5‐mesityldipyrromethene). Both high‐spin iron(II)‐nitroxido species are stable in the absence of weak C−H bonds, but decay via N−O bond homolysis to ferrous or ferric iron hydroxides in the presence of 1,4‐cyclohexadiene. Whereas (ArL)Fe(κ1‐TEMPO) reacts to give a diferrous hydroxide [(ArL)Fe]2(μ‐OH)2, the reaction of four‐coordinate (ArL)Fe(κ2‐N,O‐AZADO) with hydrogen atom donors yields ferric hydroxide (ArL)Fe(OH)(AZAD). Mechanistic experiments reveal saturation behavior in C−H substrate and are consistent with rate‐determining hydrogen atom transfer.  相似文献   

15.
Selectivity control in hydroarylation‐based C−H alkylation has been dominated by steric interactions. A conceptually distinct strategy that exploits the programmed switch in the C−H activation mechanism by means of cobalt catalysis is presented, which sets the stage for convenient C−H alkylations with unactivated alkenes. Detailed mechanistic studies provide compelling evidence for a programmable switch in the C−H activation mechanism from a linear‐selective ligand‐to‐ligand hydrogen transfer to a branched‐selective base‐assisted internal electrophilic‐type substitution.  相似文献   

16.
The development of new and practical 3‐pentoxythiocarbonyl auxiliaries for IrI‐catalyzed C−H alkylation of azacycles is described. This method allows for the α‐C−H alkylation of a variety of substituted pyrrolidines, piperidines, and tetrahydroisoquinolines through alkylation with alkenes. While the practicality of these simple carbamate‐type auxiliaries is underscored by the ease of installation and removal, the method's utility is demonstrated in its ability to functionalize biologically relevant l ‐proline and l ‐trans ‐hydroxyproline, delivering unique 2,5‐dialkylated amino acid analogues that are not accessible by other C−H functionalization methods.  相似文献   

17.
18.
A new reaction mode for triarylboranes under photochemical conditions was discovered. Photoirradiation of dimesitylboryl‐substituted (hetero)arenes produced spirocyclic boraindanes, where one of the C−H bonds in the ortho ‐methyl groups of the mesityl substituents was formally added in a syn fashion to a C−C double bond of the (hetero)aryl group. Quantum chemical calculations and laser flash photolysis measurements indicated that the reaction proceeds through a [1,6]‐sigmatropic rearrangement. This behavior is reminiscent of the photochemical reaction mode of arylalkenylketones, thus demonstrating the isosteric relation between tricoordinate organoboron compounds and the corresponding pseudo‐carbocationic species in terms of pericyclic reactions. Despite the disrupted π‐conjugation, the resulting spirocyclic boraindanes exhibited a characteristic absorption band at relatively long wavelengths (λ =370—400 nm).  相似文献   

19.
20.
Ruthenium(II) bis(carboxylate)s proved highly effective for two decarboxylative C−H alkenylation strategies. The decarboxylation proceeded efficiently at rather low temperatures. The unique versatility of the decarboxylative ruthenium(II) catalysis is reflected in the oxidative olefinations with alkenes as well as the redox‐neutral hydroarylations of alkynes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号