首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Considering the excellent performance of halloysite as a catalyst support and in an attempt to benefit from the concept of nanoreactors in the catalysis, an innovative catalytic system has been designed, in which acrylamide and bis‐acrylamide were photo‐polymerized in the presence of palladated halloysite. The novel precipitation photo‐polymerization method avoided the formation of an extended polymeric network, but led to the formation of co‐polymer on the halloysite periphery. The co‐polymer exhibited good swellability in aqueous media and formed hydrogel. This hydrophilic environment around catalytic palladated halloysite can be considered as a nanoreactor that can concentrate the substrate and bring them into the vicinity of the palladated halloysite. This catalytic system was used for promoting hydrogenation of hydrophobic nitro arenes in aqueous media. To avoid immiscibility of hydrophobic substrates and hydrophilic nature of the nanoreactor, that emerged from swelling of hydrogel, β‐cyclodextrin (CD) was utilized as phase transfer agent. The results confirmed high catalytic activity of this catalytic system. Even highly hydrophobic substrates could tolerate hydrogenation under this protocol to furnish the corresponding product in high yield. Finally, the contribution of both CD and hydrogel to the catalysis was confirmed. Moreover, studying the recyclability of the catalyst as well as Pd leaching proved the high recyclability of the catalyst and low leaching of Pd nanoparticles.  相似文献   

2.
Taking advantage of computational chemistry, the best diamine for the synthesis of a multi‐dentate ligand from the reaction with 3‐(trimethoxysilyl) propylisocyanate (TEPI) was selected. Actually, predictive Density Functional Theory (DFT) calculations provided the right diamino chain, i.e. ethylenediamine, capable to sequester a palladium atom, together with the relatively polar solvent toluene, and then undergo the experiments as a selective catalytic agent. The ligand was then prepared and applied for the decoration of the halloysite (Hal) outer surface to furnish an efficient support for the immobilization of Pd nanoparticles. The resulting catalyst exhibited high catalytic activity for hydrogenation of nitroarenes. Moreover, it showed high selectivity towards nitro functional group. The study of the catalyst recyclability confirmed that the catalyst could be recycled for several reaction runs with only slight loss of the catalytic activity and Pd leaching. Hot filtration test also proved the heterogeneous nature of the catalysis.  相似文献   

3.
Amine‐functionalized halloysite nanotubes (HNTs‐2 N) were prepared and further modified by introduction of salicylaldehyde and formation of imine functionality (HNTs‐2 N‐Sal). The latter was subsequently used for immobilization of CuI and formation of CuI@HNTs‐2 N‐Sal, which could effectively promote click reactions of terminal alkynes, sodium azide and α‐haloketones or alkyl halides in aqueous media and under mild reaction conditions to afford 1,2,3‐triazoles in relatively short reaction times. Notably, the catalyst could be recycled in up to six reaction runs with negligible loss of catalytic activity and CuI leaching. Also, the geometry of CuI adsorption on the modified HNTs surface was explored by molecular simulation with density functional theory. Furthermore, topographic steric maps of possible coordination modes were obtained using the recently released SambVca2 web application tool. Based on obtained results, a catalytic site with superior performance was suggested.  相似文献   

4.
Combining the excellent features of halloysite nanoclay and cyclodextrin, a novel hybrid system was designed and synthesized based on covalent attachment of tosylated cyclodextrin to thiosemicarbazide‐functionalized halloysite nanoclay and used for the immobilization of Pd nanoparticles. The resulting hybrid, Pd@HNTs‐T‐CD, was then characterized using various techniques, and successfully used for promoting copper‐ and ligand‐free Sonogashira coupling reactions of halobenzenes and acetylenes in a mixture of water and ethanol. Notably, under Pd@HNTs‐T‐CD catalysis, the reaction could proceed in relatively short reaction time to furnish the corresponding products in high yields. Additionally, the catalyst was recyclable and could be simply recovered and reused for several reaction runs. Results also established negligible leaching of Pd, indicating the efficiency of HNTs‐T‐CD for embedding Pd nanoparticles.  相似文献   

5.
Polymer-supported catalysts of several kinds, including-cyclodextrin (P-CD),-cyclodextrin-diethylenetriamine (P-CD-DETA), and-cyclodextrin-N-methylhydroxamate (P-CD-NMHA)-containing polymers, as well as their corresponding metal complexes, were synthesized and examined as catalysts for the hydrolysis of phosphate esters. The kinetic measurements were performed in a phosphate buffer (0.05 M, pH 8.2) at a temperature of 25.0±0.1 °C. Each kinetic run was initiated on introducing ester stock solution (0.13 ml) containing diphenylp-nitrophenyl phosphate (DPPNPP) in dioxane (0.010 M). The rate of hydrolysis of DPPNPP was evaluated by measuring the absorbance of liberatedp-nitrophenol at 402 nm. The dissociation constants between DPPNPP and the polymers P-CD, P-CD-DETA and P-CD-NMHA obtained from Eadie-type plots were 16.8, 16.4 and 8.0 (×10–3 M) and the acceleration factors were 1.5, 2.8 and 8.6 respectively. Hence P-CD-NMHA is the most promising catalyst. The activation parameters, preexponential factor (A) and activation energy using P-CD-NMHA as catalyst, areA=1.2×109 min–1 andE a=43 kJ/mol respectively; the latter was about 12 kJ/mol lower than the activation energy of spontaneous hydrolysis. The results indicate that the catalytic power of P-CD-NMHA may reflect the combined behavior of molecular recognition and nucleophilicity.  相似文献   

6.
Merrifield resin supported cinchona ammonium salts bearing 2′-fluorobenzene, 2′-cyanobenzene and 2′-N-oxypyridine groups were prepared and applied to the phase-transfer catalytic alkylation of N-(diphenylmethylene)glycine tert-butyl ester for the enantioselective synthesis of α-amino acids (76-96% ee).  相似文献   

7.
A novel catalytic nanocomposite, MNPs/Hal-POSS-HEMA-Pd, composed of halloysite nanoclay and polyhedral oligomeric silsesquioxane is reported. To synthesize the catalyst, magnetic halloysite was vinyl functionalized and then polymerized with 2-hydroxyethyl methacrylate and methacrylate polyhedral oligomeric silsesquioxane. Afterwards, the latter was palladated to furnish a heterogeneous catalyst with use for catalyzing the reductive degradation of organic dyes, Rhodamine B, and methyl orange with NaBH4. The kinetic and thermodynamic parameters of both reactions were estimated. The results asserted that low content of the catalyst could catalyze the dye reduction reactions to furnish hydrogenated product in quantitative conversion in a very short reaction times (1 min). It is assumed that both halloysite and polyhedral oligomeric silsesquioxane can contribute to the anchoring of Pd nanoparticles. On the other hand, the polymeric network around halloysite can furnish a microenvironment for bringing dyes in the vicinity of active sites. Moreover, unique tubular morphology of halloysite can effectively improve dye adsorption and consequently enhance dye reduction. Additionally, the study of the recyclability of the catalyst approved that it could be magnetically recovered and reused for ten successive reaction runs with trivial leach of Pd (2 wt.%) and decrement of the catalytic activity.  相似文献   

8.
Catalytic transfer hydrogenation (CTH) of various aldehydes and ketones was studied using iron phthalocyanine catalyst, in order to substitute the typically used rare transition metals (Ir, Rh, Ru) with an easily available and less expensive metal. Iron phthalocyanine was found to be an efficient hydrogenation catalyst and its immobilized version was successfully prepared. The immobilized iron phthalocyanine was also active in the CTH reaction of various carbonyl compounds, and it was easy to handle and possible to recycle. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
选择加氢催化剂是石油化工领域一类重要的催化剂,广泛应用于各类乙烯装置中C2、C3、C4等组分以及裂解汽油中炔烃和二烯烃的脱除等领域.本文从制备与处理方法、助剂、载体、活性中心结构形态、反应机理、非Pd催化剂6个方面,对近5年来选择加氢催化剂,特别是炔烃和二烯烃选择加氢催化剂结构与性能的研究进行了评述.  相似文献   

10.
以天然层状黏土蒙脱石(MMT)为前体,通过液相沉积-沉淀将镍物种引入水溶液中剥离为MMT纳米片表面的简易方法制得Ni/MMT纳米片。该Ni/MMT纳米片由于是二维(2D)结构,利于芳烃及其加氢产物的传质扩散,相比Ni/SBA-15和Ni/γ-Al2O3催化剂,具有更为高效的芳烃加氢性能,且在镍负载量高达18.5%时,其四氢萘加氢的转化频率(TOF)达到最高值。  相似文献   

11.
采用共沉淀法制备了系列不同Mg/Fe/Al配比MgFeAl-HTLcs前驱体,经焙烧、浸渍K改性、二次焙烧后用于CO加氢反应。采用N2吸附-脱附、SEM、TG、XRD、H2-TPR、XPS等手段对催化剂进行了表征。结果表明,共沉淀法制备的不同配比MgFeAl-HTLcs类水滑石前躯体均具有典型层状结构;焙烧后生成MgO、Fe2O3以及少量MgFeAlO4物相,三组元间相互作用增强,反应后以MgCO3和Fe3O4物相为主,同时出现较弱的Fe5C2相;K改性后发生结构重构,热稳定性增强,且随Al含量增加,比表面积显著单调下降;与K/Mg-Fe相比,K/Mg-Fe-Al样品中Fe2O3到Fe3O4的还原受到抑制;二次焙烧后,反应前表面相对富Fe,反应后表面富K。在CO加氢反应中,K/Mg-Fe-Al系列催化剂均表现出较高的反应活性以及烯烃选择性,随Fe/Al配比相对增加,C5+含量呈降低趋势,O/P值增加;与K/1.5Mg-0.67Fe相比,K/1.5Mg-0.67Fe-0.33Al催化剂C5+含量由22.17%降至10.90%,C=2-4含量由40.98%提高至47.28%。  相似文献   

12.
采用物理掺杂法制备了生物质灰分作为助剂的融铁催化剂,通过X射线衍射、透射电镜、穆斯堡尔谱等方法对催化剂进行了表征,并在固定床反应器中对其CO_2加氢制高碳烃的催化性能进行了评价。结果表明,与不含生物质灰分助剂的催化剂相比,添加助剂的融铁催化剂粒径较小且尺寸分布较窄,Fe_3O_4、Fe_5C_2、Fe_3C和α-Fe四相协同共存,进而促使逆水气变换反应与C-C偶联的串联反应高效进行,在有效抑制甲烷生成的同时,可明显提升高碳烃选择性。高碳烃产物以C_(4-18)的烃类为主,在300℃、1. 0 MPa、4800 h~(-1)、H~2/CO_2=3. 0、助剂添加量为5%(质量分数)的条件下,其在烃类产物中选择性最高可达73. 9%。  相似文献   

13.
The ultrafine particles of a new style Fe-Cu-based catalysts for CO hydrogenation were prepared by impregnating the organic sol of Fe(OH)3 and Cu(OH)2 onto the activated Al2O3, in which the organic sol of Fe(OH)3 and Cu(OH)2 were prepared in the microemulsion of dodecylbenzenesulfonic acid sodium(S)/n-butanol(A)/toluene(O)/water with V(A)/V(O) = 0.25 and W(A)/W(S) = 1.50. This catalyst was characterized by particle size analysis, XRD and TG. The results of particle size analysis showed that Fe(OH)3 particles with a mean size of 17.1 nm and Cu(OH)2 particles with an average size of 6.65 um were obtained. TG analysis and XRD patterns suggested that 673 K is the optimal calcination temperature. CO hydrogenation produced C+OH with a high selectivity above 58 wt% by using the ultrafine particles as catalyst, and the total alcohol yield of 0.250 g·ml^-1 ·h^-1 was obtained when the contents of Al2O3 and K were 88.61 wt% and 1.60 wt%, respectively.  相似文献   

14.
The synthesis of new hydrogel copolymers and their use for anchoring Pd and Pt species is described. The supported catalysts are effective for the reduction of alkenes, dienes, alkynes, and nitroaromatics under mild conditions. The catalysts have been characterized by chemical analysis, particle size measurement, IR, TGA, and x-ray photoelectron spectra. Relative reactivities and the effects of substrate structure, solvents, catalyst loading, particle size of the catalysts, and partial pressure of hydrogen have been determined. The kinetics of hydrogenation have been analyzed using concepts useful under slurry reaction conditions. The recycling efficiencies of the catalysts and product analysis to establish selectivities have been assessed. © 1992 John Wiley & Sons, Inc.  相似文献   

15.
Although transition-metal complexes are very attractive as homogeneous catalysts in fine chemistry, their high prices often limit their applications. A means to recycle those catalysts would solve this problem and would simultaneously facilitate the downstream purification of the product. This is now realized in a new concept in which homogeneous catalysis is coupled to dialysis. The advantages of homogeneous catalysis (off-the-shelf catalysts, high activities and selectivities) are thus combined with those of heterogeneous catalysis (easy catalyst separation from product solution, reuse of catalyst, and possibility for continuous operation). Since the heart of the process is the membrane, self-prepared membranes were preferred as they allow a better control and understanding of the separation characteristics. Rhodamine B was used as a probe molecule to define the working conditions of the membrane. The concept is proven to work for two relevant chiral reactions: a hydrogenation with Ru-BINAP and a hydrogen transfer reaction with Ru-TsDPEN [BINAP=(1,1'-binaphthalene)-2,2'-diylbis(diphenylphosphine); TsDPEN= tosyl-N,N'-diphenyl-1,2-ethanediamine].  相似文献   

16.
17.
Oxygen- and nitrogen-functionalized carbon nanotubes (OCNTs and NCNTs) were applied as metal-free catalysts in selective olefin hydrogenation. A series of NCNTs was synthesized by NH3 post-treatment of OCNTs. Temperature-programmed desorption, N2 physisorption, Raman spectroscopy, high-resolution transmission electron microscopy and X-ray photoelectron spectroscopy were employed to characterize the surface properties of OCNTs and NCNTs, aiming at a detailed analysis of the type and amount of oxygen- and nitrogen-containing groups as well as surface defects. The gas-phase treatments applied for oxygen and nitrogen functionalization at elevated temperatures up to 600 °C led to the increase of surface defects, but did not cause structural damages in the bulk. NCNTs showed a clearly higher activity than the pristine CNTs and OCNTs in the hydrogenation of 1,5-cyclooctadiene, and also the selectivity to cyclooctene was higher. The favorable catalytic properties are ascribed to the nitrogen-containing surface functional groups as well as surface defects related to nitrogen species. In contrast, oxygen-containing surface groups and the surface defects caused by oxygen species did not show clear contribution to the hydrogenation catalysis.  相似文献   

18.
A soluble polymer (MeO-PEG) supported biphenylbisphosphine (BIPHEP)-Ru/chiral diamine (1,2-diphenylethylenediamine) complex, in which the polymer is attached to the two phenyl rings of BIPHEP ligand, has been prepared, and shown to be highly active with good enantioselectivity for the catalyzed asymmetric hydrogenation of unfunctionalized aromatic ketones. The derived chiral ruthenium complex 5 proved to be stable in air allowing facile catalyst recycling. Especially for 4′-tert-butyl-acetophenone and 1-acetonaphthone, excellent ee values up to 96.5% and 95.9% have been obtained which are comparable to or even higher than the enantioselectivity achieved with 2,2′-bis(diphenylphosphino)-1,1′-binaphthyl-Ru-DPEN catalyst under similar conditions.  相似文献   

19.
CO加氢制备低碳烯烃是非石油路线获得烯烃的重要反应,其反应路线有直接法和间接法。直接法制备低碳烯烃具有反应路线短、能源利用率高、经济高效等优势。综述了近年来Fe基催化剂、Co基催化剂在CO直接制备低碳烯烃中的研究进展。分析认为:费托合成过程产物选择性遵循Anderson-Schulz-Flory(ASF)分布规律,助剂和载体的使用一定程度提高Fe基、Co基催化剂的低碳烯烃选择性。  相似文献   

20.
陈霄  石闯  梁长海 《催化学报》2021,42(12):2105-2121
炔醇选择加氢制备相应的烯醇在医药、农药、食品添加剂、香精、香料和聚合物单体等众多高端精细化学品合成中是一个非常重要的化工过程.通过一系列复杂的平行和连续的反应,炔醇可加氢生产若干个关键中间体.提高对烯醇的选择性和保持催化剂的效率是工业生产的关键,也是一个巨大的挑战.迄今为止,各种有效的贵金属和非贵金属催化剂得到了广泛的发展,尤其是钯基和镍基多相催化剂取得了显著进展.从经典的Lindlar催化剂和Raney-Ni催化剂到生物基金属催化新材料,本文系统综述了近几十年炔醇选择加氢催化剂的设计,从催化剂本身的金属活性中心、助剂(第二金属、有机配体和稳定剂)的作用、载体的性质(孔结构、酸碱性、金属与载体强相互作用)以及反应条件等因素对催化活性、目标产物的选择性和稳定性的影响进行了系统的综述.借助先进的表征技术、理论计算和实验研究,本文还阐述了炔醇选择加氢反应的机理.研究发现:(1)在所有贵金属催化剂中,Pd基催化剂对炔醇半加氢制烯醇的效率最高,且选择性最好.稳定剂和抑制剂的加入可以提高中间体的选择性,但在一定程度上降低了催化活性.此外,Zn,In和Cu等第二金属的掺杂可以调节金属Pd的几何效应和电子结构,从而调节底物和中间产物的吸附,并抑制过度加氢.与传统的Lindlar型催化剂相比,这种Pd基合金或金属间化合物可广泛应用于炔醇的选择性加氢反应,显著提高烯醇的选择性,且不需要引入有毒添加剂.(2)Ni基材料作为可替代贵金属催化剂,可分别实现炔醇的高选择性加氢制备烯醇或烷醇.然而,与贵金属催化剂相比,其反应条件相对苛刻.炔醇加氢产物分布很大程度上取决于助剂的引入和载体的酸性.此外,碳物种易沉积在Ni表面造成活性位点被覆盖,且在水热环境下Ni颗粒因团聚而失活,因此,用于炔醇选择加氢反应的镍基催化剂稳定性仍有待提高.尽管炔醇选择加氢反应在学术界和工业界都有广泛研究,但对于这些催化体系,特别是催化剂的结构性能关系和反应机理,仍有待进一步明确.(1)原位表征技术和理论计算的发展,将有助于人们理解炔醇选择性加氢的催化过程,并指导研究者根据炔醇加氢的特点设计出具有良好选择性的高效催化剂.(2)烯醇类产品一般应用于医药中间体和高分子单体,对产品纯度要求较高.因此,在不引入有毒添加剂的情况下,设计高效、高选择性催化剂至关重要.(3)水相或醇相中炔醇选择加氢反应对催化剂的水热稳定性有很高的要求.通过锚定和包覆来增强金属与载体的相互作用,抑制金属纳米粒子的聚集和流失是一种有效的手段.此外,在炔醇选择加氢反应中引入耐水载体可以有效提高催化剂的稳定性.(4)短碳链炔醇催化选择加氢反应一直是研究的热点.然而,关于长碳链炔醇的选择加氢反应过程,国内外报道相对较少.基于长碳链炔醇底物分子的空间位阻效应,有必要设计具有特殊孔道结构的选择加氢催化剂.(5)目前,绝大多数炔醇选择加氢过程还处于间歇性操作.随着市场对烯醇的需求不断增加,为了获得高品质的产品,连续化操作将是一个必然趋势.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号