首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bioorthogonal C?H allylation with ample scope was accomplished through a versatile manganese(I)‐catalyzed C?H activation for the late‐stage diversification of structurally complex peptides. The unique robustness of the manganese(I) catalysis manifold was reflected by full tolerance of sensitive functional groups, such as iodides, esters, amides, and OH‐free hydroxy groups, thereby setting the stage for the racemization‐free synthesis of C?H fused peptide hybrids featuring steroids, drug molecules, natural products, nucleobases, and saccharides.  相似文献   

2.
Bioorthogonal C?H allylation with ample scope was accomplished through a versatile manganese(I)‐catalyzed C?H activation for the late‐stage diversification of structurally complex peptides. The unique robustness of the manganese(I) catalysis manifold was reflected by full tolerance of sensitive functional groups, such as iodides, esters, amides, and OH‐free hydroxy groups, thereby setting the stage for the racemization‐free synthesis of C?H fused peptide hybrids featuring steroids, drug molecules, natural products, nucleobases, and saccharides.  相似文献   

3.
Transition‐metal‐catalyzed C?H activation has shown potential in the functionalization of peptides with expanded structural diversity. Herein, the development of late‐stage peptide macrocyclization methods by palladium‐catalyzed site‐selective C(sp2)?H olefination of tryptophan residues at the C2 and C4 positions is reported. This strategy utilizes the peptide backbone as endogenous directing groups and provides access to peptide macrocycles with unique Trp–alkene crosslinks.  相似文献   

4.
Late‐stage BODIPY diversification of structurally complex amino acids and peptides was accomplished by racemization‐free palladium‐catalyzed C(sp3)?H activation. Transformative fluorescence modification proved viable by triazole‐assisted C(sp3)?H arylation in a chemo‐ and site‐selective fashion, providing modular access to novel BODIPY peptide sensors.  相似文献   

5.
Despite the importance of stapled peptides for drug discovery, only few practical processes to prepare cross‐linked peptides have been described; thus the structural diversity of available staple motifs is currently limited. At the same time, C−H activation has emerged as an efficient approach to functionalize complex molecules. Although there are many reports on the C−H functionalization of amino acids, examples of post‐synthetic peptide C−H modification are rare and comprise almost only C(sp2)−H activation. Herein, we report the development of a palladium‐catalyzed late‐stage C(sp3)−H activation method for peptide stapling, affording an unprecedented hydrocarbon cross‐link. This method was first employed to prepare a library of stapled peptides in solution. The compatibility with various amino acids as well as the influence of the size (i ,i +3 and i ,i +4) and length of the staple were investigated. Finally, a simple solid‐phase procedure was also established.  相似文献   

6.
Methods for the chemoselective modification of amino acids and peptides are powerful techniques in biomolecular chemistry. Among other applications, they enable the total synthesis of artificial peptides. In recent years, significant momentum has been gained by exploiting palladium‐catalyzed cross‐coupling for peptide modification. Despite major advances, the prefunctionalization elements on the coupling partners translate into undesired byproduct formation and lengthy synthetic operations. In sharp contrast, we herein illustrate the unprecedented use of versatile ruthenium(II)carboxylate catalysis for the step‐economical late‐stage diversification of α‐ and β‐amino acids, as well as peptides, through chemo‐selective C−H arylation under racemization‐free reaction conditions. The ligand‐accelerated C−H activation strategy proved water‐tolerant and set the stage for direct fluorescence labelling as well as various modes of peptide ligation with excellent levels of positional selectivity in a bioorthogonal fashion. The synthetic utility of our approach is further demonstrated by twofold C−H arylations for the complexity‐increasing assembly of artificial peptides within a multicatalytic C−H activation manifold.  相似文献   

7.
The site‐selective functionalization of unactivated C(sp3)?H bonds remains one of the greatest challenges in organic synthesis. Herein, we report on the site‐selective δ‐C(sp3)?H alkylation of amino acids and peptides with maleimides via a kinetically less favored six‐membered palladacycle in the presence of more accessible γ‐C(sp3)?H bonds. Experimental studies revealed that C?H bond cleavage occurs reversibly and preferentially at γ‐methyl over δ‐methyl C?H bonds while the subsequent alkylation proceeds exclusively at the six‐membered palladacycle that is generated by δ‐C?H activation. The selectivity can be explained by the Curtin–Hammett principle. The exceptional compatibility of this alkylation with various oligopeptides renders this procedure valuable for late‐stage peptide modifications. Notably, this process is also the first palladium(II)‐catalyzed Michael‐type alkylation reaction that proceeds through C(sp3)?H activation.  相似文献   

8.
The merger of cobalt‐catalyzed C?H activation and electrosynthesis provides new avenues for resource‐economical molecular syntheses, unfortunately their reaction mechanisms remain poorly understood. Herein, we report the identification and full characterization of electrochemically generated high‐valent cobalt(III/IV) complexes as crucial intermediates in electrochemical cobalt‐catalyzed C?H oxygenations. Detailed mechanistic studies provided support for an oxidatively‐induced reductive elimination via highly‐reactive cobalt(IV) intermediates. These key insights set the stage for unprecedented cobaltaelectro two‐fold C?H/C?H activation.  相似文献   

9.
The late‐stage functionalization (LSF) of peptides represents a valuable strategy for the design of potent peptide pharmaceuticals by enabling rapid exploration of chemical diversity and offering novel opportunities for peptide conjugation. While the C(sp2)?H activation of tryptophan (Trp) is well documented, the resurgence of radical chemistry is opening new avenues for the C?H functionalization of other aromatic side‐chains. Herein, we report the first example of LSF at C2 of histidine (His) utilizing a broad scope of aliphatic sulfinate salts as radical precursors. In this work, the exquisite selectivity for histidine functionalization was demonstrated through the alkylation of complex unprotected peptides in aqueous media. Finally, this methodology was extended for the installation of a ketone handle, providing an unprecedented anchor for selective oxime/hydrazone conjugation at histidine.  相似文献   

10.
An effective and pragmatic strategy for the synthesis of structurally diverse indolo[2,3‐c]isoquinolin‐5‐ones has been developed via a Rh(III)‐catalyzed C?H activation and [4+2] annulation reaction of N‐methoxybenzamides and 3‐diazoindolin‐2‐imines. The reaction involves the efficient formation of two new (one C?C and one C?N) bonds under operationally simple conditions and has the benefits of a broad substrate scope.  相似文献   

11.
Transition‐metal‐mediated metalation of an aromatic C?H bond that is adjacent to a tertiary phosphine group in arylphosphines via a four‐membered chelate ring was first discovered in 1968. Herein, we overcome a long‐standing problem with the ortho‐C?H activation of arylphosphines in a catalytic fashion. In particular, we developed a rhodium‐catalyzed ortho‐selective C?H borylation of various commercially available arylphosphines with B2pin2 through PIII‐chelation‐assisted C?H activation. This discovery is suggestive of a generic platform that could enable the late‐stage modification of readily accessible arylphosphines.  相似文献   

12.
The step‐economical late‐stage diversification of tryptophan‐containing peptides was accomplished through chemo‐ and site‐selective palladium‐catalyzed C?H arylation under exceedingly mild reaction conditions. Thus, the C?H functionalization occurred efficiently at 23 °C with a catalyst loading as low as 0.5 mol %, and/or in H2O.  相似文献   

13.
Stoichiometric C?H bond activation of arenes mediated by iron carbonyls was reported by Pauson as early as in 1965, yet the catalytic C?H transformations have not been developed. Herein, an iron‐catalyzed annulation of N?H imines and internal alkynes to furnish cis‐3,4‐dihydroisoquinolines is described, and represents the first iron‐carbonyl‐catalyzed C?H activation reaction of arenes. Remarkablely, this is also the first redox‐neutral [4+2] annulation of imines and alkynes proceeding by C?H activation. The reaction also features only cis stereoselectivity and excellent atom economy as neither base, nor external ligand, nor additive is required. Experimental and theoretical studies reveal an oxidative addition mechanism for C?H bond activation to afford a dinuclear ferracycle and a synergetic diiron‐promoted H‐transfer to the alkyne as the turnover‐determining step.  相似文献   

14.
In the past decade, transition‐metal‐catalyzed C–H activations have been very popular in the research field of organometallic chemistry, and have been considered as efficient and convenient strategies to afford complex natural products, functional advanced materials, fluorescent compounds, and pharmaceutical compounds. In this account, we begin with a brief introduction to the development of transition‐metal‐catalyzed C–H activation, especially the development of transition‐metal‐catalyzed chelation‐assisted C–H activation. Then, a more detailed discussion is directed towards our recent studies on the transition‐metal‐catalyzed chelation‐assisted oxidative C–H/C–H functionalization of aromatic substrates bearing directing functional groups.  相似文献   

15.
A palladium‐catalyzed C? H arylation of aliphatic amines with arylboronic esters is described, proceeding through a four‐membered‐ring cyclopalladation pathway. Crucial to the successful outcome of this reaction is the action of an amino‐acid‐derived ligand. A range of hindered secondary amines and arylboronic esters are compatible with this process and the products of the arylation can be advanced to complex polycyclic molecules by sequential C? H activation reactions.  相似文献   

16.
A combined ion‐mobility mass spectrometry (IM‐MS) and DFT study has been employed to investigate the mechanism and the origin of selectivity of palladium/mono‐N‐protected amino acid (MPAA)‐catalyzed enantioselective C?H activation reactions of several prochiral substrates. We captured the [Pd(MPAA)(substrate)] complex at different stages, and demonstrated that the C?H bond can be activated in the absence of an external base. DFT studies lead to the establishment of a significantly modified relay mechanism invoking a key conformational effect to account for the origin of enantioselectivity. This relay mechanism successfully accounts for the enantioselectivity for all the relevant reactions reported. The enantioselectivity originates from the rigid square‐planar Pd coordination in the C?H activation transition state: Bidentate MPAA and substrate coordination.  相似文献   

17.
An Rh‐catalyzed selective C?H bond activation of diaryl‐substituted anilides is described. In an attempt to achieve C?H activation of C‐aryl rings, we unexpectedly obtained an N‐aryl ring product under non‐coordinating anion conditions, whereas the C‐aryl ring product was obtained in the absence of a non‐coordinating anion. This methodology has proved to be an excellent means of tuning and adjusting selective C?H bond activation of C‐aryl and N‐aryl rings. The approach has been rationalized by mechanistic studies and theoretical calculations. In addition, it has been found and verified that the catalytic activity of the rhodium catalyst is obviously improved by non‐coordinating anions, which provides an efficient strategy for obtaining a highly chemoselective catalyst. Mechanistic experiments also unequivocally ruled out the possibility of a so‐called “silver effect” in this transformation involving silver.  相似文献   

18.
A RhIII‐catalyzed intramolecular redox‐neutral atom‐economic annulation of a tethered alkyne has been developed to efficiently construct 2‐amidealkyl indoles with completely reversed regioselectivity by a C?H activation pathway. Furthermore, using the RhIII‐catalyzed C?H activation/annulation as a key step, a one‐pot synthesis of pyrido[1,2‐a]indoles has also been developed and applied to a highly efficient formal total synthesis of (±)‐goniomitine.  相似文献   

19.
Copper‐catalyzed thiophenol C?H activation is described. Through an initial attempt to conduct C‐arylation with arylboronic acid, a rather surprising sequential C?H activation and S‐arylation was discovered. Mechanistic investigation revealed the disulfide intermediate as the key component in directing C?H oxidation. The overall reaction proceeded under mild conditions with molecular oxygen as the oxidant. Discovery of disulfide as the directing group provides a potential new direction for catalytic C?H functionalization under mild conditions.  相似文献   

20.
Manganese‐catalyzed C? H functionalization reactions of ketimines set the stage for the expedient synthesis of cis‐β‐amino acid esters through site‐ and regioselective alkene annulations. The organometallic C? H activation occurred efficiently with high functional group tolerance, delivering densely functionalized β‐amino acid derivatives with ample scope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号