首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Nanoelectrodes allow precise and quantitative measurements of important biological processes at the single living‐cell level in real time. Cylindrical nanowire electrodes (NWEs) required for intracellular measurements create a great challenge for achieving excellent electrochemical and mechanical performances. Herein, we present a facile and robust solution to this problem based on a unique SiC‐core–shell design to produce cylindrical NWEs with superior mechanical toughness provided by the SiC nano‐core and an excellent electrochemical performance provided by the ultrathin carbon shell that can be used as such or platinized. The use of such NWEs for biological applications is illustrated by the first quantitative measurements of ROS/RNS in individual phagolysosomes of living macrophages. As the shell material can be varied to meet any specific detection purpose, this work opens up new opportunities to monitor quantitatively biological functions occurring inside cells and their organelles.  相似文献   

2.
Reactive oxygen and nitrogen species (ROS and RNS) play important roles in various physiological processes (e.g. phagocytosis) and pathological conditions (e.g. cancer). The primary ROS/RNS, viz., hydrogen peroxide, peroxynitrite ion, nitric oxide, and nitrite ion, can be oxidized at different electrode potentials and therefore detected and quantified by electroanalytical techniques. Nanometer-sized electrochemical probes are especially suitable for measuring ROS/RNS in single cells and cellular organelles. In this article, we survey recent advances in the localized measurements of ROS/RNS inside single cells and discuss several methodological issues, including optimization of nanoelectrode geometry, precise positioning of an electrochemical probe inside a cell, and interpretation of electroanalytical data.  相似文献   

3.
Small‐molecule organoselenium‐based fluorescent probes possess great capacity in understanding biological processes through the detection of various analytes such as reactive oxygen/nitrogen species (ROS/RNS), biothiols (cysteine, homocysteine and glutathione), lipid droplets, etc. Herein, we present how substituents on the BODIPY system play a significant part in the detection of biologically important analytes for in vitro conditions and live cell imaging studies. The fluorescence of the probe was quenched by 2‐chloro and 6‐phenyl selenium groups; the probe shows high selectivity with NaOCl among other ROS/RNS, and gives a turn‐on response. The maximum fluorescence intensity is attained within ≈1–2 min with a low detection limit (19.6 nm ), and shows a ≈110‐fold fluorescence enhancement compared to signals generated for other ROS/RNS. Surprisingly, in live cell experiments, the probe specifically located and accumulated in lipid droplets, and showed a fluorescence turn‐on response. We believe this turn‐on response occurred because of aggregation‐induced emission (AIE), which surprisingly occurred only by introducing one lipophilic mesityl group at the meso position of the BODIPY.  相似文献   

4.
Over the past several decades, nanotechnology has contributed to the progress of biomedicine, biomarker discovery, and the development of highly sensitive electroanalytical / electrochemical biosensors for in vitro and in vivo monitoring, and quantification of oxidative and nitrosative stress markers like reactive oxygen species (ROS) and reactive nitrogen species (RNS). A major source of ROS and RNS is oxidative stress in cells, which can cause many human diseases, including cancer. Therefore, the detection of local concentrations of ROS (e. g. superoxide anion radical; O2•−) and RNS (e. g. nitric oxide radical; NO and its metabolites) released from biological systems is increasingly important and needs a sophisticated detection strategy to monitor ROS and RNS in vitro and in vivo. In this review, we discuss the nanomaterials‐based ROS and RNS biosensors utilizing electrochemical techniques with emphasis on their biomedical applications.  相似文献   

5.
Micrometer-sized platinized carbon electrodes have previously been used for the detection of reactive oxygen and nitrogen species (ROS and RNS) in biological systems. Here, we report the preparation and characterization of quartz-sealed platinized carbon nanoelectrodes. Such electrodes can be employed as tips in the scanning electrochemical microscope (SECM). The prepared electrodes were characterized by steady-state voltammetry, scanning electron microscopy, and SECM. In addition to ROS/RNS detection, the high surface area of a platinized nanoelectrode makes it a useful potentiometric probe. Unlike previously fabricated platinized electrodes, carbon electrodes possess a very thin insulating sheath, which is essential for experiments inside biological cells and high-resolution SECM imaging.  相似文献   

6.
The release of reactive oxygen species (ROS) or reactive nitrogen species (RNS), i.e., the initial phase of oxidative stress, by macrophage cells has been studied by electrochemistry within a microfluidic device. Macrophages were first cultured into a detection chamber containing the three electrodes system and were subsequently stimulated by the microinjection of a calcium ionophore (A23187). Their production of ROS and RNS was then measured by amperometry at the surface of a platinized microelectrode. The fabricated microfluidic device provides an accurate measurement of oxidative release kinetics with an excellent reproducibility. We believe that such a method is simple and versatile for a number of advanced applications based on the detection of biological processes of secretion by a few or even a single living cell.  相似文献   

7.
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are essential oxidative metabolites of organisms, which are closely related to physiological, pathological and pharmacological processes. The accurate detection of ROS/RNS is important for the understanding of biological processes, monitoring of pharmacological effects, and predicting the course of disease. The recently developed NIR nanoprobes based on upconversion nanoparticles (UCNPs) hold great prospects in sensitive and deep-tissue detection of ROS/RNS, and considerable progress has been achieved so far. In this review, we systematically summarize the up-to-date advances of UCNPs-based near-infrared (NIR) probes for ROS/RNS sensing, and the potential challenges and perspectives for further research are also highlighted. We envision that such a research field will have a bright future for modern biomedical applications.  相似文献   

8.
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) play a crucial role in chemical signaling processes of biological cells. Electrochemistry is one of the rare methods able to directly detect these species. ROS and RNS can be monitored in the local microenvironment of cells in real time at the site where the actual signaling takes place. This review presents recent advances made with amperometric electrochemical techniques. Existing challenges for the quantification of ROS and RNS in biological systems are discussed to promote the development of innovative and reliable cell-based assays. Figure Reactive oxygen and nitrogen species (ROS & RNS) are produced biological cells. An amperometric sensor is placed in close proximity. The recorded current I is used to determine fluxes of certain species.
Sabine BorgmannEmail:
  相似文献   

9.
Oxidative and nitrosative stress induced by ROS/RNS play crucial roles in a wide range of physiological processes and are also implicated in various diseases, including cancer and neurodegenerative disorders. Sensitive and selective methods for the detection of ROS/RNS based on fluorescent and luminescent probes are of great use in monitoring the in vivo production of these species and elucidating their biological functions. This critical review highlights recent advances that have been made in the development of fluorescent and luminescent probes employed to monitor various ROS/RNS (132 references).  相似文献   

10.
A number of studies performed on biological systems have shown that redox-active metals such as iron and copper as well as other transition metals can undergo redox cycling reactions and produce reactive free radicals termed also reactive oxygen species (ROS) or reactive nitrogen species (RNS). The most representative examples of ROS and RNS are the superoxide anion radical and nitric oxide, respectively, both playing a dual role in biological systems. At low/moderate concentrations of ROS and RNS, they can be involved in many physiological roles such as defense against infectious agents, involvement in a number of cellular signaling pathways and other important biological processes. On the other hand, at high concentrations, ROS and RNS can be important mediators of damage to biomolecules involving DNA, membrane lipids, and proteins. One of the most damaging ROS occurring in biological systems is the hydroxyl radical formed via the decomposition of hydrogen peroxide catalyzed by traces of iron, copper and other metals (the Fenton reaction). The hydroxyl radical is known to react with the DNA molecule, forming 8-OH-Guanine adduct, which is a good biomarker of oxidative stress of an organism and a potential biomarker of carcinogenesis. This review discusses the role of iron and copper in uncontrolled formation of ROS leading to various human diseases such as cancer, cardiovascular disease, and neurological disorders (Alzheimer’s disease and Parkinson’s disease). A discussion is devoted to the various protective antioxidant networks against the deleterious action of free radicals. Metal-chelation therapy, which is a modern pharmacotherapy used to chelate redox-active metals and remove toxic metals from living systems to avoid metal poisoning, is also discussed.  相似文献   

11.
Electrochemical sensors are ideally suited for the detection of reactive oxygen and nitrogen species (ROS and RNS) generated during biological processes. This review discusses the latest work in the development of electrochemical microsensors for ROS/RNS and their applications for monitoring oxidative stress in biological systems. The performance of recent designs of microelectrodes and electrode materials is discussed along with their functionality in preclinical models of drug efficacy, mitochondrial distress, and endothelial dysfunction. Challenges and opportunities in translating this methodology to study the pathophysiology associated with various diseases are discussed.  相似文献   

12.
A simple ratiometric probe (Naph‐Rh) has been designed and synthesized based on a through‐bond energy transfer (TBET) system for sensing HOCl. In this probe, rhodamine thiohydrazide and naphthalene formyl were connected by simple synthesis methods to construct a structure of monothio‐bishydrazide. Free probe Naph‐Rh showed only the emission of naphthalene. When probe Naph‐Rh reacted with HOCl, monothio‐bishydrazide could be converted into 1,2,4‐oxadiazole, which not only ensured that the donor and the acceptor were connected with electronically conjugated bonds, but also resulted in the spiro‐ring opening and the emission of rhodamine. Therefore, a typical TBET process took place. The probe possessed high‐energy transfer efficiency and large pseudo‐Stokes shifts. As the first TBET probe for HOCl, Naph‐Rh showed excellent selectivity and sensitivity toward HOCl over other reactive oxygen species (ROS)/reactive nitrogen species (RNS), and could respond fast to a low concentration of HOCl in the real sample. In addition, the probe was suitable for imaging HOCl in living cells due to its real‐time response, excellent resolution, and reduced cytotoxicity.  相似文献   

13.
Herein we report a convenient chemical approach to reversibly modulate protein (RNase A) function and develop a protein that is responsive to reactive oxygen species (ROS) for targeted cancer therapy. The conjugation of RNase A with 4‐nitrophenyl 4‐(4,4,5,5‐tetramethyl‐1,3,2‐dioxaborolan‐2‐yl) benzyl carbonate (NBC) blocks protein lysine and temporarily deactivates the protein. However, the treatment of RNase A–NBC with hydrogen peroxide (one major intracellular ROS) efficiently cleaves the NBC conjugation and restores the RNase A activity. Thus, RNase A–NBC can be reactivated inside tumor cells by high levels of intracellular ROS, thereby restoring the cytotoxicity of RNase A for cancer therapy. Due to higher ROS levels inside tumor cells compared to healthy cells, and the resulting different levels of RNase A–NBC reactivation, RNase A–NBC shows a significant specific cytotoxicity against tumor cells.  相似文献   

14.
Herein, a red‐emitting fluorescent probe DM‐BDP‐OCl containing a para‐DMTC benzyl pyridinium moiety at the meso position of BODIPY as self‐immolative portion for the detection of HOCl was designed and synthesized. DM‐BDP‐OCl exhibited excellent specificity and a fast response for HOCl beyond other ROS/RNS. It was used for the accurately measurable detection of HOCl with a linear range from 0 μM to 50 μM, and the detection limit for HOCl reached 60 nM. Moreover, the probe could directly monitor fluctuations of exogenous and endogenous HOCl in living HeLa and RAW 264.7 cells. This work provided a powerful and convenient imaging tool for probing pathological and physiological actions of HOCl.  相似文献   

15.
Two closely related phenyl selenyl based boron‐dipyrromethene (BODIPY) turn‐on fluorescent probes for the detection of hypochlorous acid (HOCl) were synthesized for studies in chemical biology; emission intensity is modulated by a photoinduced electron‐transfer (PET) process. Probe 2 intrinsically shows a negligible background signal; however, after reaction with HOCl, chemical oxidation of selenium forecloses the PET process, which evokes a significant increase in fluorescence intensity. The fluorescence intensity of probes 1 and 2 with HOCl involves an ~18 and ~50‐fold enhancement compared with the respective responses from other reactive oxygen/nitrogen species (ROS/RNS) and low detection limits (30.9 nm for 1 and 4.5 nm for 2 ). Both probes show a very fast response with HOCl; emission intensity reached a maximum within 1 s. These probes show high selectivity for HOCl, as confirmed by confocal microscopy imaging when testing with RAW264.7 and MCF‐7 cells.  相似文献   

16.
Tissue damage caused by excessive amounts of neutrophil‐derived reactive oxygen species (ROS) occurs in many inflammatory diseases. Butyrate is a short‐chain fatty acid (SCFA) with known anti‐inflammatory properties, able to modulate several neutrophil functions. Evidence is provided here that butyrate inhibits neutrophil ROS release in a dose and time‐dependent fashion. Given the short half‐life of butyrate, chitosan/hyaluronan nanoparticles are next designed and developed as controlled release carriers able to provide cells with a long‐lasting supply of this SCFA. Notably, while the inhibition of neutrophil ROS production by free butyrate declines over time, that of butyrate‐loaded chitosan/hyaluronan nanoparticles (B‐NPs) is sustained. Additional valuable features of these nanoparticles are inherent ROS scavenger activity, resistance to cell internalization, and mucoadhesiveness. B‐NPs appear as promising tools to limit ROS‐dependent tissue injury during inflammation. Particularly, by virtue of their mucoadhesiveness, B‐NPs administered by enema can be effective in the treatment of inflammatory bowel diseases.  相似文献   

17.
Large doses of acetaminophen (APAP) could cause oxidative stress and tissue damage through production of reactive oxygen/nitrogen (ROS/RNS) species and quinone metabolites of APAP. Although ROS/RNS are known to modify DNA, the effect of APAP on DNA modifications has not been studied systematically. In this study, we investigate whether large doses of APAP can modify the nuclear DNA in C6 glioma cells used as a model system, because these cells contain cytochrome p450-related enzymes responsible for APAP metabolism and subsequent toxicity (Geng and Strobel, 1995). Our results revealed that APAP produced ROS and significantly elevated the 8-oxo- deoxyguanosine (8-oxodG) levels in the nucleus of C6 glioma cells in a time and concentration dependent manner. APAP significantly reduced the 8- oxodG incision activity in the nucleus by decreasing the activity and content of a DNA repair enzyme, Ogg1. These results indicate that APAP in large doses can increase the 8-oxodG level partly through significant reduction of Ogg1 DNA repair enzyme.  相似文献   

18.
The detection and elimination of intracellular bacteria remain a major challenge. In this work, we report an aggregation‐induced emission (AIE) bioprobe that can detect bacterial infection and kill bacteria surviving inside macrophages through a dynamic process, notably specific molecular tailoring of the probe by caspase‐1 activation in infected macrophages and accumulation of the residue on phagosomes containing bacteria, leading to light‐up fluorescent signals. Moreover, the AIEgen can serve as a photosensitizer for generation of reactive oxygen species (ROS); and the average ROS indicator fluorescent signal intensity per unit area in the bacterial phagosomes is approximately 2.7‐fold higher than that in the cytoplasm. This, in turn, induces bacteria killing with high efficiency and minimal cytotoxicity towards macrophages. We envision that this specific light‐up bioprobe may provide a new approach for selective and sensitive detection and eradication of intracellular bacterial infections.  相似文献   

19.
Regenerable, multifunctional ebselenol antioxidants were prepared that could quench peroxyl radicals more efficiently than α‐tocopherol. These compounds act as better mimics of the glutathione peroxidase enzymes than ebselen. Production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in human mononuclear cells was considerably decreased upon exposure to the organoselenium compounds. At a concentration of 25 μm , the ebselenol derivatives showed minimal toxicity in pre‐osteoblast MC3T3 cells.  相似文献   

20.
《化学:亚洲杂志》2017,12(15):1927-1934
The role of fluorescent molecules in diagnosis, treatment as well as in biomedical research has great current medicinal significance and is the focus of concentrated effort across the scientific research spectrum. Related research continues to reveal new practical sensing systems that bear enhanced features for interfacing of substituted molecules with biological systems. As part of an effort to better understand chalcogenide systems, a new dithiomaleimide BODIPY ( BDP‐NGM ) probe has been designed, synthesized and characterized. The fluorescence of BDP‐NGM was quenched by the incorporation of [3,4‐bis (phenylthio)] on the maleimide‐4‐phenyl moiety which is, in turn, placed at the meso ‐position of the BODIPY system. The probe shows a turn‐on fluorescence response upon reaction with ONOO; mass spectral evidence reveals peaks in agreement with products involving oxidation of the sulfur groups to sulfone groups. An about 18.0‐fold emission intensity enhancement was found. By comparison, the emission signal from another ROS/RNS, superoxide, gave a modest turn on signal (≈5.0‐fold). The reaction is complete within 10 min, judging from the monitoring of the turn‐on fluorescence process; the detection limit was found to be 0.4 μm . BDP‐NGM can be used for the detection of ONOO under both acidic and basic conditions. Live cell imaging showed that the current probe can be used for the selective detection of ONOO in living systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号