首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The analogy of the reactivity of group 1 phosphides to that of FLPs is further demonstrated by reactions with CO, affording a new synthetic route to acyl‐phosphide anions. The reaction of [K(18‐crown‐6)][PtBu2] ( 1 ) with CO affords [(18‐crown‐6)K?THF2][ZtBuP=C(tBu)O] ( 2?THF2 ) as the major product, and the minor product [K6(18‐crown‐6)][(tBu2PCO)2]3 ( 3 ). Species 2 reacts with either BPh3 or additional CO to give [K(18‐crown‐6)][(Ph3B)tBuPC(tBu)O] ( 4 ) and [K(18‐crown‐6)][(OCtBu)2P] ( 5 ), respectively. The acyl‐phosphide anion 2 is thought to be formed by a photochemically induced radical process involving a transient species with triplet carbene character, prompting 1,2‐tert‐butyl group migration. A similar process is proposed for the subsequent reaction of 2 with CO to give 5 .  相似文献   

2.
Reduction of neutral metal clusters (Co4(CO)12, Ru3(CO)12, Fe3(CO)12, Ir4(CO)12, Rh6(CO)16, {CpMo(CO)3}2, {Mn(CO)5}2) by decamethylchromocene (Cp*2Cr) or sodium fluorenone ketyl in the presence of cryptand[2.2.2] and DB‐18‐crown‐6 was studied. Nine new salts with paramagnetic Cp*2Cr+, cryptand[2.2.2](Na+), and DB‐18‐crown‐6(Na+) cations and [Co6(CO)15]2– ( 1 , 2 ), [Ru6(CO)18]2– ( 3 – 4 ) dianions, [Rh11(CO)23]3– ( 6 ) trianions, and new [Ir8(CO)18]2– ( 5 ) dianions were obtained and structurally characterized. The increase of nuclearity of clusters under reduction was shown. Fe3(CO)12 preserves the Fe3 core under reduction forming the [Fe3(CO)11]2– dianions in 7 . The [CpMo(CO)3]2 and [Mn(CO)5]2 dimers dissociate under reduction forming mononuclear [CpMo(CO)3] ( 8 ) and [Mn(CO)5] ( 9 ) anions. In all anions the increase of negative charge on metal atoms shifts the bands attributed to carbonyl C–O stretching vibrations to smaller wavenumbers in agreement with the elongation of the C–O bonds in 1 – 9 . In contrast, the M–C(CO) bonds are noticeably shortened at the reduction. Magnetic susceptibility of the salts with Cp*2Cr+ is defined by high spin Cp*2Cr+ (S = 3/2) species, whereas all obtained anionic metal clusters and mononuclear anions are diamagnetic. Rather weak magnetic coupling between S = 3/2 spins is observed with Weiss temperature from –1 to –11 K. That is explained by rather long distances between Cp*2Cr+ and the absence of effective π–π interaction between them except compound 7 showing the largest Weiss temperature of –11 K. The {DB‐18‐crown‐6(Na+)}2[Co6(CO)15]2– units in 2 are organized in infinite 1D chains through the coordination of carbonyl groups of the Co6 clusters to the Na+ ions and π–π stacking between benzo groups of the DB‐18‐crown‐6(Na+) cations.  相似文献   

3.
In (1,4,7,10,13,16‐hexaoxacyclooctadecane)rubidium hexachloridoantimonate(V), [Rb(C12H24O6)][SbCl6], (1), and its isomorphous caesium {(1,4,7,10,13,16‐hexaoxacyclooctadecane)caesium hexachloridoantimonate(V), [Cs(C12H24O6)][SbCl6]}, (2), and ammonium {ammonium hexachloridoantimonate(V)–1,4,7,10,13,16‐hexaoxacyclooctadecane (1/1), (NH4)[SbCl6]·C12H24O6}, (3), analogues, the hexachloridoantimonate(V) anions and 18‐crown‐6 molecules reside across axes passing through the Sb atoms and the centroids of the 18‐crown‐6 groups, both of which coincide with centres of inversion. The Rb+ [in (1)], Cs+ [in (2)] and NH4+ [in (3)] cations are situated inside the cavity of the 18‐crown‐6 ring; they are situated on axes and are equally disordered about centres of inversion, deviating from the centroid of the 18‐crown‐6 molecule by 0.4808 (13), 0.9344 (7) and 0.515 (8) Å, respectively. Interaction of the ammonium cation and the 18‐crown‐6 group is supported by three equivalent hydrogen bonds [N...O = 2.928 (3) Å and N—H...O = 162°]. The centrosymmetric structure of [Cs(18‐crown‐6)]+, with the large Cs+ cation approaching the centre of the ligand cavity, is unprecedented and accompanied by unusually short Cs—O bonds [2.939 (2) and 3.091 (2) Å]. For all three compounds, the [M(18‐crown‐6)]+ cations and [SbCl6] anions afford linear stacks along the c axis, with the cationic complexes embedded between pairs of inversion‐related anions.  相似文献   

4.
Mixtures of macrocyclic crown ethers (L′=DC18C6, DB18C6, 18C6; L″=B15C5) andp-tert-butylcalix[4]arene (LH4) in dichloroethane exhibit synergistic effects in the extration of alkali ions (M+). These extractions are described by two independent reactions: —a two phase ion exchange: $$LH_{4org} + M_{aq}^ + \rightleftharpoons MLH_{3org} + H_{aq}^ + , (K_{ex} )$$ —the formation of an adduct in the organic phase: $$MLH_{3org} + nL_{org}^\prime (or nL_{org}^{''} ) \rightleftharpoons LH_3 ML_{norg}^\prime (or LH_3 ML_{norg}^{''} )(K_{fn} ).$$ It is shown thatn=1 for all the systems including 18 membered crown ethers (M=Na, K, Rb, Cs) and for the Na+-B15C5 system; whereasn=2 in the case of the K+-B15C5 and Rb+-B15C5 systems. Ion size effects on the stability constant of the adducts reveal strong interactions between the crown ether and the cation in the above mentioned systems. The corresponding adduct in the Cs+—B15C5 system has a very low stability constant in comparison with the others. This seems to show that B15C5 is unable to remove the Cs+ ion from the calixarene ‘cup’ in the cesium calixarenate complex.  相似文献   

5.
Chiral assembly and asymmetric synthesis are critically important for the generation of chiral metal clusters with chiroptical activities. Here, a racemic mixture of [K(CH3OH)2(18‐crown‐6)]+[Cu5(StBu)6]? ( 1?CH3OH ) in the chiral space group was prepared, in which the chiral red‐emissive anionic [Cu5(StBu)6]? cluster was arranged along a twofold screw axis. Interestingly, the release of the coordinated CH3OH of the cationic units turned the chiral 1?CH3OH crystal into a mesomeric crystal [K(18‐crown‐6)]+[Cu5(StBu)6]? ( 1 ), which has a centrosymmetric space group, by adding symmetry elements of glide and mirror planes through both disordered [Cu5(StBu)6]? units. The switchable chiral/achiral rearrangement of [Cu5(StBu)6]? clusters along with the capture/release of CH3OH were concomitant with an intense increase/decrease in luminescence. We also used cationic chiral amino alcohols to induce the chiral assembly of a pair of enantiomers, [d /l ‐valinol(18‐crown‐6)]+[Cu5(StBu)6]? ( d /l ‐Cu5V ), which display impressive circularly polarized luminescence (CPL) in contrast to the CPL‐silent racemic mixture of 1?CH3OH and mesomeric 1 .  相似文献   

6.
Alkynyl‐substituted 3H‐corrole 9 a was converted to [3]cumulenic 2H‐corrole 10 a by treatment with trimethylsilyl chloride (TMSCl), and 1,3‐butadiyne‐bridged 3H‐corrole dimer 11 b was transformed into [5]cumulene‐bridged 2H‐corrole dimer 12 b by oxidation with PbO2. Both 10 a and 12 b were metalated to form ZnII complexes 10 a‐Zn and 12 b‐Zn . The structures of 10 a‐Zn and 12 b‐Zn show planar conformations with bond‐length alternations that are analogous to those of tetraaryl [n]cumulenes. The cumulenic corrole dimers 12 b and 12 b‐Zn display large NIR absorption bands in the range of 700–1400 nm (maximum ϵ≈1.0×105 m −1 cm−1) owing to the effective π‐conjugation between the two corrole units through the [5]cumulene bridge.  相似文献   

7.
We examined by quantum chemical methods the mechanism of SN2 reaction using metal bromide MBr (M = Na, K, Cs) and KX (X= F, Cl) in CH3CN promoted by crown ether (18‐crown‐6). We focus on whether the metal salts react as a contact ion pair (CIP; M+ and X in close contact) or as a solvent‐separated ion pair (SSIP; M+ and X at large distance). In SSIP mechanism, X is removed far enough from M+ for the metal salt to be considered as “separated” by the effects of the crown ether and the solvent. In the CIP picture, conversely, the coordination of 18‐crown‐6 to M+ is not sufficient to overcome the powerful Coulombic interactions between M+ and X. We find that the CIP route is favored for SN2 bromination processes using MBr (M = Na, K, Cs). For SN2 reaction using KF, the feasibility of the two pathways is essentially equal, whereas for SN2 chlorination by KCl the SSIP route is predicted to be favored.  相似文献   

8.
Mono‐ and dianions of 2‐tert‐butyl‐3a2‐azapentabenzo[bc,ef,hi,kl,no]corannulene ( 1 a ) were synthesized by chemical reduction with sodium and cesium metals, and crystallized as the corresponding salts in the presence of 18‐crown‐6 ether. X‐ray diffraction analysis of the sodium salt, [{Na+(18‐crown‐6)(THF)2}3{Na+(18‐crown‐6)(THF)}( 1 a 2?)2], revealed the presence of a naked dianion. In contrast, controlled reaction of 1 a with Cs allowed the isolation of singly and doubly reduced forms of 1 a , both forming π‐complexes with cesium ions in the solid state. In [{Cs+(18‐crown‐6)}( 1 a ?)]?THF, asymmetric binding of the Cs+ ion to the concave surface of 1 a ? is observed, whereas in [{Cs+(18‐crown‐6)}2( 1 a 2?)], two Cs+ ions bind to both the concave and convex surfaces of the dianion. The present study provides the first successful isolation and characterization of the reduced products of heteroatom‐containing buckybowl molecules.  相似文献   

9.
The products of the reactions between potassium hexachloroplatinate {K2PtCl6} and 18-crown-6 or dibenzo-18-crown-6 in acetonitrile were studied. Pure crystalline compounds [2K·2(18-crown-6)· 2CH3CN]2+·[PtCl6]2-·2H2O, [2K·dibenzo-18-crown-6·CH3CN]2 +·[PtCl6]2 -, and [2K·dibenzo-18-crown-6·CH3CN]2 +·[Pt2Cl10]2 - were obtained. Physicochemical properties of these compounds were studied, and their near- and far-IR IR spectra and thermogravimetric curves were considered. The composition of the complexes is determined by metal:ligand molar ratio and crown ether nature. It was found that acetonitrile is coordinated via the nitrogen atom.  相似文献   

10.
Alkali‐isocyanoacetates. Synthesis and Structure of [K(18‐crown‐6)](O2CCH2NC) The alkali isocyanoacetates M+[O2CCH2NC]? (M = Li,Na,K,Cs) ( 1a ‐ d ) are synthesized by reaction of ethyl isocyanoacetate with the respective alkali hydroxides in ethanol and characterized by IR, NMR (1H, 13C), and mass spectrometry (FAB). In alcoholic solution as well as in the gas phase ion pairs and higher aggregated species are observed. In contrast, [K(18‐crown‐6)][O2CCH2NC] ( 2 ) which is obtained from 1c and 18‐crown‐6, turns out to be a 1:1 electrolyte in solution (acetone); in the solid, the isocyanoacetate anion binds to K+ via the two carboxylate oxygen atoms resulting in an O8‐coordinated metal atom.  相似文献   

11.
In the structure of the complex of dibenzo‐18‐crown‐6 [systematic name: 2,5,8,15,18,21‐hexaoxatricyclo[20.4.0.09,14]hexacosa‐1(26),9,11,13,22,24‐hexaene] with 4‐methoxyanilinium tetrafluoroborate, C7H10NO+·BF4·C20H24O6, the protonated 4‐methoxyanilinium (MB‐NH3+) cation forms a 1:1 supramolecular rotator–stator complex with the dibenzo‐18‐crown‐6 molecule via N—H...O hydrogen bonds. The MB‐NH3+ group is attached from the convex side of the bowl‐shaped crown, in contrast with similar ammonium cations that nest in the curvature of the bowl. The cations are associated via C—H...π interactions, while the cations and anions are linked by weak C—H...F hydrogen bonds, forming cation–crown–anion chains parallel to [011].  相似文献   

12.
The synthesis and structural characterization of the first coordination compounds of bis(diphosphacyclobutadiene) cobaltate anions [M(P2C2R2)2]? is described. Reactions of the new potassium salts [K(thf)3{Co(η4‐P2C2tPent2)2}] ( 1 ) and [K(thf)4{Co(η4‐P2C2Ad2)2}] ( 2 ) with [AuCl(tht)] (tht=tetrahydrothiophene), [AuCl(PPh3)] and Ag[SbF6] afforded the complexes [Au{Co(P2C2tPent2)2}(PMe3)2] ( 3 ), [Au{Co(P2C2Ad2)2}]x ( 4 ), [Ag{Co(P2C2Ad2)2}]x ( 5 ), [Au(PMe3)4][Au{Co(P2C2Ad2)2}2] ( 6 ), [K([18]crown‐6)(thf)2][Au{Co(P2C2Ad2)2}2] ( 7 ), and [K([18]crown‐6)(thf)2][M{Co(P2C2Ad2)2}2] ( 8 : M=Au 9 : M=Ag) in moderate yields. The molecular structures of 2 and 3 , and 6 – 9 were elucidated by X‐ray crystallography. Complexes 4 – 9 were thoroughly characterized by 31P and 13C solid state NMR spectroscopy. The complexes [Au{Co(P2C2Ad2)2}]x ( 4 ) and [Ag{Co(P2C2Ad2)2}]x ( 5 ) exist as coordination polymers in the solid state. The linking mode between the monomeric units in the polymers is deduced. The soluble complexes 1 – 3 , 6 , and 7 were studied by multinuclear 1H‐, 31P{1H}‐, and 13C{1H} NMR spectroscopy in solution. Variable temperature NMR measurements of 3 and 6 in deuterated THF reveal the formation of equilibria between the ionic species [Au(PMe3)4]+, [Au(PMe3)2]+, [Co(P2C2R2)2]?, and [Au{Co(P2C2R2)2}2]? (R=tPent and Ad).  相似文献   

13.
The title compounds, bis{μ‐N‐[(diphenylphosphanyl)methyl]pyridin‐4‐amine‐κ2N1:P}disilver bis(perchlorate) acetonitrile monosolvate, [Ag2(C18H17N2P)2](ClO4)2·CH3CN, (1), and bis{μ‐N‐[(diphenylphosphanyl)methyl]pyridin‐4‐amine‐κ2N1:P}bis[(nitrato‐κ2O,O)silver], [Ag2(C18H17N2P)2(NO3)2], (2), each contain disilver macrocyclic [Ag2(C18H17N2P)2]2+ cations lying about inversion centres. The cations are constructed by two N‐[(diphenylphosphanyl)methyl]pyridin‐4‐amine (DPP) ligands linking two Ag+ cations in a head‐to‐tail fashion. In (1), the unique Ag+ cation has a near‐linear coordination geometry consisting of one pyridine N atom and one P atom from two different DPP ligands. Two ClO4 anions doubly bridge two metallomacrocycles through Ag...O and N—H...O weak interactions to form a chain extending in the c direction. The half‐occupancy acetonitrile molecule lies with its methyl C atom on a twofold axis and makes a weak N...Ag contact. In (2), there are two independent [Ag(C18H17N2P)]+ cations. The nitrate anions weakly chelate to each Ag+ cation, leading to each Ag+ cation having a distorted tetrahedral coordination geometry consisting of one pyridine N atom and one P atom from two different DPP ligands, and two chelating nitrate O atoms. Each dinuclear [Ag2(C18H17N2P)2(NO3)2] molecule acts as a four‐node to bridge four adjacent equivalent molecules through N—H...O interactions, forming a two‐dimensional sheet parallel to the bc plane. Each sheet contains dinuclear molecules involving just Ag1 or Ag2 and these two types of sheet are stacked in an alternating fashion. The sheets containing Ag1 all lie near x = , , etc, while those containing Ag2 all lie near x = 0, 1, 2 etc. Thus, the two independent sheets are arranged in an alternating sequence at x = 0, , 1, etc. These two different supramolecular structures result from the different geometric conformations of the templating anions which direct the self‐assembly of the cations and anions.  相似文献   

14.
The conformational energy landscape and the associated electronic structure and spectroscopic properties (UV/Vis/near‐infrared (NIR) and IR) of three formally d5/d6 mixed‐valence diruthenium complex cations, [{Ru(dppe)Cp*}2(μ‐C≡CC6H4C≡C)]+, [ 1 ]+, [trans‐{RuCl(dppe)2}2(μ‐C≡CC6H4C≡C)]+, [ 2 ]+, and the Creutz–Taube ion, [{Ru(NH3)5}2(μ‐pz)]5+, [ 3 ]5+ (Cp=cyclopentadienyl; dppe=1,2‐bis(diphenylphosphino)ethane; pz=pyrazine), have been studied using a nonstandard hybrid density functional BLYP35 with 35 % exact exchange and continuum solvent models. For the closely related monocations [ 1 ]+ and [ 2 ]+, the calculations indicated that the lowest‐energy conformers exhibited delocalized electronic structures (or class III mixed‐valence character). However, these minima alone explained neither the presence of shoulder(s) in the NIR absorption envelope nor the presence of features in the observed vibrational spectra characteristic of both delocalized and valence‐trapped electronic structures. A series of computational models have been used to demonstrate that the mutual conformation of the metal fragments—and even more importantly the orientation of the bridging ligand relative to those metal centers—influences the electronic coupling sufficiently to afford valence‐trapped conformations, which are of sufficiently low energy to be thermally populated. Areas in the conformational phase space with variable degrees of symmetry breaking of structures and spin‐density distributions are shown to be responsible for the characteristic spectroscopic features of these two complexes. The Creutz–Taube ion [ 3 ]5+ also exhibits low‐lying valence‐trapped conformational areas, but the electronic transitions that characterize these conformations with valence‐localized electronic structures have low intensities and do not influence the observed spectroscopic characteristics to any notable extent.  相似文献   

15.
Truly cationic metallocenes with the parent cyclopentadienyl ligand are so far unknown for the Group 14 elements. Herein we report on an almost “naked” [SnCp]+ cation with the weakly coordinating [Al{OC(CF3)3}4] and [{(F3C)3CO}3Al−F−Al{OC(CF3)3}3] anions. [SnCp][Al{OC(CF3)3}4] was used to prepare the first main‐group quadruple‐decker cation [Sn3Cp4]2+ again as the [Al{OC(CF3)3}4] salt. Additionally, the toluene adduct [CpSn(C7H8)][Al{OC(CF3)3}4] was obtained.  相似文献   

16.
Truly cationic metallocenes with the parent cyclopentadienyl ligand are so far unknown for the Group 14 elements. Herein we report on an almost “naked” [SnCp]+ cation with the weakly coordinating [Al{OC(CF3)3}4] and [{(F3C)3CO}3Al−F−Al{OC(CF3)3}3] anions. [SnCp][Al{OC(CF3)3}4] was used to prepare the first main‐group quadruple‐decker cation [Sn3Cp4]2+ again as the [Al{OC(CF3)3}4] salt. Additionally, the toluene adduct [CpSn(C7H8)][Al{OC(CF3)3}4] was obtained.  相似文献   

17.
Novel silylation reactions at [Ge9] Zintl clusters starting from the chlorosilanes SiR3Cl (R = iBu, iPr, Et) and the Zintl phase K4Ge9 are reported. The formation of the tris‐silylated anions [Ge9(SiR3)3] [R = iBu ( 1a ), iPr ( 1b ), Et ( 1c )] by heterogeneous reactions in acetonitrile was monitored by ESI‐MS measurements. For R = iBu 1H, 13C and 29Si NMR experiments confirmed the exclusive formation of 1a . Subsequent reactions of 1a with CuNHCDippCl and Au(PPh3)Cl result in formation of the neutral metal complex (CuNHCDipp)[Ge9{Si(iBu)3}3]·0.5 tol ( 2 ·0.5 tol) and the metal bridged dimeric unit {Au[Ge9{Si(iBu)3}3]2} ( 3a ), isolated as a (K‐18c6)+ salt in (K‐18c6)Au[Ge9{Si(iBu)3}3]2·tol ( 3 ·tol), respectively. Finally, from a toluene/hexane solution of 1a in presence of 18‐crown‐6, crystals of the compound (K‐18c6)2[Ge9{Si(iBu)3}2]·tol ( 4 ·tol), containing the bis‐silylated cluster anion [Ge9(Si(iBu)3)2]2– ( 4a ), were obtained. The compounds 2 ·0.5 tol, 3 ·tol and 4 ·tol were characterized by single‐crystal structure determination.  相似文献   

18.
Complexes between crown ethers and quaternary ammonium cations have been studied by electrospray ionisation mass spectrometry (ESI-MS). The ESI-MS method has been shown to allow observation of not only stable inclusion complexes between large crown ethers and tetramethylammonium cation (e.g. [DB30C10 + (CH3)4N]+ ion) but also of unstable inclusion complexes between smaller crown ethers and quaternary ammonium cations which are difficult to observe by other methods, namely [18C6 + (CH3)4N]+ ion. Stability of the complexes between crown ethers containing aromatic ring and tetramethylammonium cation is enhanced by cation-Π interactions. The molecule of 18C6 does not contain aromatic rings, thus [18C6 + (CH3)4N]+ ion exists due to the formation of C–H···O hydrogen bonds. Such a complex is quite unusual, since C–H···O hydrogen bonds are very weak and usually coexist with other strong interactions.  相似文献   

19.
Two calixarene‐based bis‐alkynyl‐bridged AuI isonitrile complexes with two different crown ether pendants, [{calix[4]arene‐(OCH2CONH‐C6H4C≡C)2}{Au(CNR)}2] (R=benzo[15]crown‐5 ( 1 ); R=benzo[18]crown‐6 ( 2 )), together with their related crown‐free analogue 3 (R=C6H3(OMe)2‐3,4) and a mononuclear gold(I) complex 4 with benzo[15]crown‐5 pendant, have been designed and synthesized, and their photophysical properties have been studied. The X‐ray structure of the ligand, calix[4]arene‐(OCH2CONH‐C6H4C?CH)2 has been determined. The cation‐binding properties of these complexes with various metal ions have been studied using UV/Vis, emission, 1H NMR, and ESI‐MS techniques, and DFT calculations. A new low‐energy emission band associated with Au???Au interaction could be switched on upon formation of the metal ion‐bound adduct in a sandwich fashion.  相似文献   

20.
Crystal Structures of „Supramolecular”︁ Benzo‐18‐crown‐6 Potassium Tetrathiocyanato Metallates: A Dimeric Complex {[K(Benzo‐18‐crown‐6)]2[Hg(SCN)4]}2 and Two Isomeric Complexes [K(Benzo‐18‐crown‐6)][Cd(SCN)3] Containing Trithiocyanato Cadmate Anions with Chain Structures By reaction of potassium thiocyanatomercurate(II) complexes with benzo‐18‐crown‐6 (2,3‐benzo‐1,4,7,10,13,16‐hexaoxacyclooctadec‐2‐ene) crystals of {[K(benzo‐18‐crown‐6)]2[Hg(SCN4)]}2 ( 1 ) were obtained. 1 crystallizes monoclinic, space group P21/n (non‐standard setting of P21/c), a = 1737.35(2), b = 1377.16(2), c = 1984.12(3) pm, β = 100.637(1)°, Z = 2. With potassium tetrathiocyanatocadmate(II) two modifications of a complex [K(benzo‐18‐crown‐6)][Cd(SCN)3] ( 2 , 3 ), of different symmetry were formed. 2 crystallizes monoclinic, P21/c, a = 1158,31(3), b = 1096,55(2), c = 2028,46(2) pm, β = 99,5261(2)°, Z = 4, 3  orthorhombic, P21cn, a = 1105,95(3), b = 1413,07(4), c = 1617,10(5) pm, Z = 4. 1 has a dimeric structure, built up from a dication K2(benzo‐18‐crown‐6)2]2+ and two [K(benzo‐18‐crown‐6)]+ cations, which are bridged by two [Hg(SCN)4]2– anions. In 2 and 3 triply bridged infinite [{Cd(SCN)3}n] zigzag chains, stretching along screw axes, are to be found as anions. In 2 these chains exist in two conformations related by inversion symmetry, whereas in 3 only one form can be found. [K(benzo‐18‐crown‐6)]+ cations are linked to the anion chains via K · · · S interactions of different lengths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号